Относительная влажность и абсолютная влажность: особенности измерения и определения. Влажность воздуха

Упругость водяного пара – парциальное (частичное) давление водяного пара в воздухе

Абсолютная влажность воздуха – кол-во водяного пара в граммах в 1 м 3

Удельная влажность –

Относительная влажность (R) – отношение упругости вод. Пара при той той же температуры в %.

Конденсация – процесс перехода из газа в жидкость

Сублимация- из газообразного в твердое (минуя жидкое состояние)

Условия сублимации и конденсации:

Наличие водяного пара в атмосфере в сос-нии насыщенности

Наличие центров кристаллизации

Строение атмосферы. Перечислите составляющие ее слои с указанием высот.

Имя слоя Слои По высоте Примечания
Тропосфера до 8(18) км (средние широты) до 10(12) км (в полярных) до 16(18) км (в тропических)
Нижний(слой трения) 1-2 км Облака нижнего яруса и туманы
Средний до 6 км (над нижним) Облака среднего яруса
Верхний От 6 до 10(11) Образуют облака верхнего яруса и вершины мощных кучево-дождевых
Тропопауза 1-2 км (между тропосф и стратосф)
Стратосфера до 80-85 км
нижний (изотермический) До 30-35 км t постоянна и как в тропопаузе
средний (теплый слой) От 30(35)-55(60)км t увеличивается с высотой достигая 50-70° (поглощение озоном ультраф. солн. радиации)
Верхний (слой перемешивания) 55(60) – 80(85) км t уменьшается с высотой жо -50(-70°)
Ионосфера 80(85)-1000км 0.5 от всей массы атмосферы
Сфера рассеивания Над ионосферой Молекулы могут преодолевать земное притяжение
Мезосфера До 80 км
Термосфера 80-800 км
Экзосфера До 3000

Дайте определение атмосферного фронта, приведите их классификацию.

Атмосф фронт – переходные зоны между возд массами, характеризуется резкими изменениями значений метрологических эл-тов в горизонт. направлении.

Классификация:

Теплый фронт – перемещающийся в сторону отступающей холодной воздушной массы (как по клину холодного воздуха поднимается теплый до 6-7км).

Холодный фронт – перемещающийся в сторону отступающей теплой воздушной массы. Типы:

1-го рода вторжение холодного воздуха вдоль всей пов-ти восходящего движения теплого воздуха

2-го рода – теплый воздух неустойчив и содержит запасы влаги. Холодный воздух вытесняет теплый (в тепл возд массе появляются восходящие вертикальные движения, то приводит к формированию кочево-дождевых облаков, верхняя граница достигает тропопаузы)

Карты барической топографии. Характеристика.

Карты барич топографии – по аэрологическим наблюдениям составляют для пов-тей (АТ850 высота 1.5 км над землей) (АТ700 высота 3 км), (АТ500 – 5км) (АТ300 – 9км)

Перечислите барические системы. Дайте их краткую характеристику.

Циклон (Н) – барич сис-ма виде замкнутых изобар, с низким давлением в центре. Область сходимости приземных ветров дуют под углом 30-40° к центру циклона, против час стрелки.

Ложбина – вытянутая полоса пониженного давления между 2-мя антициклонами, обладающая осью, вблизи которой изобары имеют max кривизну

Ось – линия min давления, линия сходимости приземных ветров

Антициклон (В) - барич сис-ма виде замкнутых изобар с высоким давлением в центре, область расходимости призем. ветров. Ветер по час стрелке, отклоняется от изобары в сторону низк давления на 30°

Гребень – вытянутая полоса пониж давления между 2-мя циклонами, выраженная ось в ось в близи которой изобары max кривизну. Ось гребня – линяя max давления, линия расходимости приземных ветров

Барические седловины – промежуточная барич си-ма, между 2-мя циклонами и 2-мя антициклонами. Погода обусловлена св-ми возд массы где была сформирована. Ветры слабые, неустойчивые. Зимой на суше радиальные туманы и волнистые облака. Летом – мощнокуч. и кучево-дождевые облака с дождем и громом.

Дайте определение грозы и представьте схему грозового облака.

Гроза – процесс конденсации водяного пара в атмосфере, сопровождающ. Молниями и громом.

Фронтальные грозы – при взаимодействии двух воздушных масс (теплой и холодной), тянутся длинной цепью и охватывают большие пространства.

Дайте определение боевого порядка. Перечислите, что он должен обеспечивать.

Боевой порядок - взаимное расположение частей, подразделений ЛА в воздухе для совместного выполнения боевой задачи.

БП обеспечивает:

Успешное преодоление ПВО

Полное использование боевых возможностей частей и подразделений

Наилучшие условия для поиска и выхода на цели

Наилучшие условия для наблюдения за возд пространством

Свободу маневра и пилотирования

Удобство и непрерывность управления

Безопасность ЛА от столкновения в воздухе

Безопасность от поражения своими боеприпасами

Определение сбора БП. Перечислите этапы. Сущность БП.

Сбор – маневр одиночных (групп) самолетов с целью построения заданного БП в назн время на назн высоте в утвержденном р-не

Этапы БП:

Взлет и набор высоты построения БП

Выход в исходную точку начала маневрирования

Маневрирования для занятия заданного БП

Сущность БП = БП обеспечивает

Охарактеризуйте способ набора высоты на безопасных дистанциях.

Применяется при взлете парой (звеной) и может использоваться в случаях, когда интервал взлета меньше безопасной временной дистанции для пробивания облаков на безопасных дистанциях

Охарактеризуйте способ набора высоты на безопасных разностях высот (по разным глиссадам).

РБЗ контролирует точность выдерживания заданного направления и сохранение безопасных разностей высот экипажами использования ОНИ, оператора ПРВ и доклады летчиков

Необходимые приборы и принадлежности : станционный психрометр, аспирационный психрометр, дистиллированная вода, пипетка для смачивания, штатив для укрепления психрометра, ртутный барометр, Психрометрические таблицы, волосной гигрометр.

В атмосферном воздухе всегда имеется водяной пар, содержание которого меняется по объёму в пределах от 0 до 4% и зависит от физико-географических условий местности, времени года, циркуляционных особенностей атмосферы, состояния поверхности почвы, температуры воздуха и т.п.

В единице объёма воздуха при данной температуре содержание водяного пара не может быть больше некоторого предельного количества, называемого максимально возможной упругостью водяного пара или максимальным насыщением . Оно соответствует равновесию между паром и водой, т.е. насыщенному состоянию пара.

Водяной пар, образующийся над испаряемой поверхностью, оказывает определённое давление, которое называется упругостью водяного пара или парциальным давлением (е).

Упругость водяного пара (е) определяется по формуле:

е = Е" - А· р(t - t")

где Е" – максимальная упругость водяного пара при температуре смоченного термометра; р – атмосферное давление; t – температура воздуха (температура по сухому термометру), 0 С; t – температура испаряющей поверхности (температура по смоченному термометру), 0 С; А – постоянная психрометра, зависящая от его конструкции и, главным образом, от скорости движения воздуха около приёмной части психрометра. Так, постоянная станционного психрометра принимается равной 0,0007947, что соответствует средней скорости движения воздуха в будке (0,8 м/сек). Постоянная аспирационного психрометра равна 0,000662 при постоянной скорости движения воздуха (2 м/сек) у приемной части термометров.

Измеряется парциальное давление в миллиметрах ртутного столба или миллибарах. При любой температуре парциальное давление водяного пара (е) не может превышать давление насыщенного пара (Е). Для вычисления Е существуют специальные формулы по ним составлены таблицы по которым его и находят (прил.1, 2).



Относительная влажность (f) – отношение парциального давления водяного пара к давлению насыщенного пара над плоской поверхностью дистиллированной воды при данной температуре, выраженное в %.

Относительная влажность воздуха показывает на сколько воздух близок или далёк к насыщению водяным паром, определяют с точностью до 1%.

Дефицит насыщения (d) – разность между давлением насыщенного водяного пара и его парциальным давлением. d = Е – е.

Дефицит насыщения выражается в мм ртутного столба или миллибарах.

Абсолютная влажность (g) – количество водяного пара, находящегося в 1м 3 воздуха, выраженное в граммах.

Если давление воздуха выражено в миллибарах, то g определяется по формуле:

Если давление воздуха выражено в миллиметрах, то g определяется по формуле:

где L – коэффициент расширения газов, равный 1/273, или 0,00366.

Точка росы (t d) – температура, при которой водяной пар, содержащийся в воздухе при неизменном давлении, достигает состояния насыщения относительно плоской поверхности чистой воды или льда. Точку росы определяют с точностью до десятых долей градуса.

Методы измерения влажности воздуха

Психрометрический метод – это основной метод для определения влажности воздуха, который основан на измерении температуры воздуха и температуры смоченного водой термометра – температуры термодинамического равновесия между затратами тепла на испарение со смоченной поверхности и притоком тепла к термометру от окружающей среды. Определение влажности воздуха этим методом осуществляется по показанию психрометра – прибора, состоящего из двух термометров. Приёмная часть (резервуар) одного из психрометрических термометров обёртывается батистом, находящимся в увлажнённом состоянии (смоченный термометр), С поверхности резервуара смоченного термометра происходит испарение, на которое затрачивается тепло. Другой термометр психрометра – сухой, он показывает температуру воздуха. Смоченный же термометр показывает собственную температуру, зависящую от интенсивности испарения воды с поверхности резервуара.



Для измерения влажности воздуха используются два типа психрометров: станционный и аспирационный.

Станционный психрометр состоит из двух одинаковых термометров с делениями через 0,2 0 , установленных вертикально на штативе в психрометрической будке. Резервуар правого термометра плотно обёртывается в один слой кусочком батиста, конец которого опускается в стаканчик с дистиллированной водой. Стаканчик закрывается крышкой с прорезью для батиста. Установку термометров в психрометрической будке представлена на рис. 20.

Отсчёты по термометрам должны проводиться как можно быстрее, так как присутствие наблюдателя вблизи термометров может исказить показания. Вначале отсчитываются и записываются десятые доли, а затем – целые градусы.

Наблюдения по психрометру проводятся при любой положительной температуре воздуха, а при отрицательной – только до -10 0 , так как при более низкой температуре результаты наблюдений становятся ненадежными. При температуре воздуха ниже 0 0 кончик батиста на смоченном термометре обрезается. Батист смачивают на 30 мин до начала наблюдений, погружая резервуар термометра в стаканчик с водой.

Рис. 20 Установка термометров в психрометрической будке

При отрицательной температуре вода на батисте может быть не только в твердом состоянии (лёд), но и в жидком (переохлаждённая вода). По наружному виду установить это весьма трудно. Для этого необходимо прикоснуться к батисту карандашом, на конце которого имеется кусочек льда или снега, и следить за показанием термометра. Если в момент прикосновения столбик ртути повысится, то на батисте была вода, которая перешла в лёд; при этом выделилась скрытая теплота, за счёт чего и увеличилось показание термометра. Если же от прикосновения к батисту показание термометра не меняется, значит на батисте лёд, и изменения агрегатного состояния не происходит.

Учёт агрегатного состояния воды на резервуаре смоченного термометра весьма важен, так как максимальная упругость водяного пара, входящая в психрометрическую формулу, над водой и льдом различна.

Вычисление характеристик влажности воздуха по показаниям психрометра осуществляется с помощью психрометрических таблиц, составленных по формулам. В психрометрических таблицах приводятся готовые значения t d , e, f, d для разных сочетаний t и t" при постоянной А, равной 0,0007947 и атмосферном давлении 1000 мб. Если давление воздуха больше или меньше 1000 мб, к характеристикам влажности вводятся поправки. Поправку у упругости водяного пара находят по величине атмосферного давления и разности показаний сухого и смоченного термометров. При атмосферном давлении меньше 1000 мб, эта поправка положительна, если превышает 1000 мб, ее вводят со знаком минус.

Аспирационный психрометр (рис. 21) состоит из двух психрометрических термометров 1 , 2 с ценой деления 0.2 0 , помещённых в металлическую оправу.

Оправа состоит из трубки 3 , раздваивающейся книзу, и боковых защит 4 . Верхний конец трубки 3 соединен с аспиратором 7 , просасывающим наружный воздух через трубки 5 и 6 , в которых находятся резервуары термометров 10, 11 . Аспиратор имеет пружинный механизм. Пружина заводится ключом 8 . Трубки 5 и 6 сделаны двойными. Резервуар одного из термометров (правый) обвернут коротко обрезанным батистом. Никелированная и полированная поверхность психрометра хорошо отражает солнечные лучи. Поэтому для его установки не требуется никакой дополнительной защиты и он устанавливается на открытом воздухе. Аспирационные психрометры используются для градиентных наблюдений на метеорологических станциях, а также в полевых микроклиматических исследованиях.

Рис. 21 Аспирационный психрометр

Перед наблюдением психрометр выносят из помещения зимой за 30 мин, а летом за 15 мин. Батист правого термометра смачивают с помощью резиновой груши 9 с пипеткой летом за 4 мин, а зимой за 30 мин до срока наблюдений. После смачивания заводят аспиратор, который в момент отсчёта должен работать полным ходом. Поэтому зимой за 4 мин до отсчёта нужно вторично завести психрометр.

Характеристики влажности воздуха по данным аспирационного психрометра вычисляют также с помощью психрометрических таблиц. Психрометрическая постоянная для этого прибора равна 0,000662.

Гигрометрический метод – основан на свойстве обезжиренного человеческого волоса менять свою длину при изменении влажности воздуха.

Волосной гигрометр (рис. 22). Основной частью волосного гигрометра является обезжиренный (обработанный в эфире и спирте) человеческий волос, обладающий свойством изменять свою длину под влиянием изменения относительной влажности. При уменьшении относительной влажности волос 1 , укрепленный на раме 2 , укорачивается, при увеличении - удлиняется.

Верхний конец волоса прикреплён к регулировочному винту 3 , с помощью которого можно менять положение стрелки 7 на шкале 9 гигрометра. Нижний конец волоса соединён с блоком в виде дужки 4 , сидящей на стержне 5. Грузик 6 этого блока служит для натяжения волоса. На оси блока 8 укреплена стрелка 7 , свободный конец которой при изменении влажности перемещается по шкале.

Цена деления шкалы гигрометра - 1% относительной влажности. Деления на шкале неравномерны: при небольших значениях влажности они крупнее, а при больших – мельче. Применение такой шкалы обусловлено тем, что изменение длины волоса идёт быстрее при малых величинах влажности и медленнее при больших её значениях.

Рис. 22 Волосной гигрометр

При продолжительном действии гигрометры становятся менее чувствительными к изменению влажности: волос вытягивается и загрязняется, а плёнка высыхает. Учитывая это, приходится часто сверять прибор с психрометром и находить его поправки, для чего применяется графический приём. Для этого на координатную сетку наносят точки по данным одновременных наблюдений относительной влажности по психрометру и гигрометру за длительный период (например, за осенние месяцы при подготовке гигрометра к зиме) и через середину полосы, где точки легли более густо, проводят плавную линию так, чтобы по обе стороны от нее было по возможности одинаковое количество точек (рис. 23).

В дальнейшем, пользуясь этой линией, для любого показания гигрометра можно найти соответствующее значение относительной влажности по станционному психрометру. Например, если отсчёт по гигрометру был 75%, то исправленное значение относительной влажности будет 73%.

Для более удобного пользования графиком составляют переводную таблицу. В первом вертикальном столбце (десятки) и в первой горизонтальной строке (единицы) дается шкала гигрометра. В клетки записываются значения относительной влажности, снятые с кривой. Пользуясь этой таблицей, по показаниям гигрометра находят исправленные значения относительной влажности.

Рис.23 График поправок гигрометра

Особо важное значение наблюдения по гигрометру имеют в зимнее время года, когда этот прибор нередко остается единственным для определения влажности воздуха. Поэтому в осенние месяцы его тщательно регулируют и строят переводной график, которым и пользуются в течение всей зимы.

1 Ознакомиться с психрометрическими таблицами путём проработки пояснений к ним и разбора примеров.

2 Ознакомиться с устройством станционного и аспирационного психрометров.

3 Провести измерения по аспирационному психрометру.

4 По показаниям сухого и смоченного термометров и по величине давления с помощью психрометрических таблиц определить характеристики влажности воздуха.

Результаты наблюдений оформить в тетрадь.

Фактическая упругость водяного пара -е - оказываемое им давление измеряемся в мм рт.ст. или миллибарах.

Упругость В.п. в состоянии насыщения называют упругостью насыще­ния - Е - это максимальная упругость в.п.возможная при данной t 0 . Упру­гость насыщения растёт с t 0 воздуха: при более высокой t 0 воздух способен удержать больше в.п.,чем при более низкой.

На каждые 10 0 С упругость насыщения увеличивается ≈ в 2 раза.

Если в воздухе содержится в.п. меньше,чем нужно для насыщения его при данной t 0 , можно определить, насколько воздух близок к состоянию на­сыщения. Для этого определяется относительная влажность - r - (она харак­теризует степень насыщения воздуха водяным паром).

r = е /Е 100%

При насыщении е = Е и r = 100%

Абсолютная влажность воздуха - плотность водяного пара -а (выра­жается в граммах на 1 м 3 воздуха).

Дефицит влажности Д - разность между упругостью насыщения Е и фактической упругостью пара е при данной t 0 воздуха.

Д = Е - е

Точка росы τ - t 0 при которой содержащийся в воздухе в.п. Мог бы на­сытить воздух.

Конденсация - переход воды из газообразного состояния в жидкое происходит в атм. в виде образования мельчайших капелек диаметром в несколоко микронов. Более крупные капли образуются при слиянии мелких или таянии ледяных кристаллов.

В воздухе насыщенным вод.паром при понижении t 0 воздуха до точки росыτ или увеличении в нем количества в.п. происходит конденсация, при t 0 ниже 0 0 С, вода минуя жидкое состояние может перейти в твёрдое, образуя ледяные кристаллы; этот процесс называется сублимация.

Конденсация и сублимация могут происходить в воздухе на ядрах кон­денсации, на земной поверхности и различных предменах. Важнейшими ядра­ми конденсации являются частички растворимых гигроскопичных солей, особенно морской соли (они попадают в воздух при волнение моря, при раз­брызгивании морской воды и т.д.).

Когда t 0 воздуха охлаждающегося от подстилающей поверхности дости­гает точки росы, на холодную поверхность из него оседают: роса, иней, измо­розь, жидкие и твёрдые (наледь) налеты, гололёд.

4. Облака и их образование, структура, строение, ярусы .

Если конденсация (сублимация) водяного пара происходит на некото­рой высоте над поверхностью, то образуются облака .Они отличаются от ту­манов положением в атмосфере, физическим строением и разнообразием форм.

Облака - скопление продуктов конденсации и сублимации, их возник­новение связано с адиабатическим охлаждением поднимающегося воздуха. Поднимающийся воздух охлаждается постепенно, достигает границы, где его t 0 становится равной точке росы. Эту границу называют уровнем конденса­ции . Выше её при наличие ядер конденсации могут образовываться облака. Нижняя граница облаков совпадает с уровнем конденсации. Кристаллизация происходит при t 0 ниже -10 0 С. Опускаясь ниже уровня конд. капельки обла­ков могут испаряться.

Облака переносятся возд.течениями. Если относительная влажность в воздухе, содержащим облака, убывает, то они могут испариться. При опре­делённых условиях часть облачных элементов укрупняется , утяжеляется и может выпадать из облака в виде осадков .

По строению облака делятся на 3 класса:

1) водяные (капельные) - при положительных t 0 состоят из капель диа­метром в тысячные и сотые доли мм, при отрицательных t 0 состоят из пере­охлаждённых капелек;

2) ледяные (кристаллические) - образуются при достаточно низких t 0 ;

3) смешанные - состоят из смеси переохлаждённых капель и ледяных кристаллов, образуются при умеренно отрицательных t 0 .

Формы облаков очень разнообразны. В современной международной классификации делятся на 10 родов, в которых различают значительное чис­ло видов, разновидностей и дополнительных особенностей.

Международная классификация облаков.

Облака этих родов встречаются на высотах между уровнем моря и тро­попаузой. Условно разлтчают 3 яруса, границы ярусов зависят от географи­ческой широты и t 0 условий.

Верхний ярус облаков: полярные широты - 3-8 км, умеренные- 5-13 км, тропические - 6 -18 км.

Средний ярус облаков: полярные широты - 2-4 км, умеренные - 2-7 км, тропические - 2-8 км.

Нижний ярус облаков: во всех широтах - до 2 км.

Основные семейства и рода облаков и условия их образования.

По высоте и внешнему виду облака объединяются в 4 семейства:

IV cем. - облака вертикального развития

10 основных родов облаков объединяются в семейства следующим об­разом.

I cем. - облака верхнего яруса

1. перистые - Cirrus (Ci)

2. перисто-кучевые - Cirrocumulus (Cc)

3. перисто-слоистые - Cirrostatus (Cs)

II cем. - облака среднего яруса

4. высоко - кучевые - Altocumulus (Ac)

5. высоко - слоистые - Altoostatus (As) (могут проникать в верхний ярус)

III cем. - облака нижнего яруса

6. слоистокучевые - Stratocumulus (Sc)

7. слоистые - Stratus (St)

8. слоисто - дождевые - Nimbostratus (Ns) (почти всегда располагаются в ниж­нем ярусе, но обычно проникают и ввышележащие ярусы)

IV cем. - облака вертикального развития (основания лежат в нижнем ярусе, вершины постигают положения облаков вырхнего яруса)

9. кучевые - Cumulus (Cu)

10. кучево -дождевые - Cumulonimbus (в т.ч. грозовые и ливневые)

Характер и форма облаков обуславливаются процессами вызывающи­ми охлаждение воздуха, приводящими к облакообразованию.

Выделяют несколько генетических типов облаков.

I. Облака конвекции (кучевообразные) образуются в результате конвек­ции, при нагревании неоднородной поверхности: 1) внутримассовые (связа­ны с процессами внутри воздушных масс); 2) фронтальные (возникают благодаря процессам, связанным с фронтами, т.е. на границах между воздуш­ными массами); 3) орографические (образуются при натекании воздуха на склоны гор и возвышенностей).

II. Волнистые облака возникают преимущественно под слоем инвер­сии (слоистые, слоисто-кучевые, высоко-слоистые). В устойчивых воздуш­ных массах основной процесс развития облаков - слабый турбулентный перенос водяного пара вместе с воздухом от земной поверхности вверх и по­следующее его адиабатическое охлаждение.

III. Облака восходящего скольжения (слоистообразные) - это огромные облачные системы, вытянутые вдоль тёплых или холодных фронтов (особен­но хорошо выраженные в случае теплого фронта).

Атмосферные осадки

Атмосферными осадками называют воду, выпавшую на поверхность из атмосферы в виде дождя, мороси, крупы, снега, града. Осадки в основном выпадают из облаков, но далеко не всякое облако даёт осадки.

Формы осадков: дождь, морось, снежная крупа, снег, ледяная крупа, град.

Образование осадков. Капельки воды и кристаллики льда в облаке очень малы, они легко удерживаются воздухом, даже слабые восходящие токи увлекают их вверх. Для образования осадков необходимо укрупнение облач­ных элементов, чтобы они смогли преодолеть восходящие токи. Укрупнение происходит, 1) в результате слияния капелек и сцепления кристаллов; 2) в ре­зультате испарения одних элементов облака, диффузного переноса и конден­сации водяного пара на других элементах (особенно в смешанных облаках). По происхождению различают осадки:1) конвективные (образуются в жар­ком поясе-от южного до северного тропика), 2) орографические и 3) фронтальные (образуются при встрече воздушных масс с разной t 0 и др. фи­зическими свойствами, выпадают из теплого воздуха в умеренном и холод­ном поясах).

Характер выпадения осадков зависит от условий их образования: моро­сящие, ливневые и обложные осадки.

Характеристики режима осадков. Суточный ход осадков (совпадает с суточным ходом облачности) и его типы: 1) континентальный (имеет 2 мак­симума - утром и после полудня, и 2 минимума - ночью и перед полу­днем) и 2) морской (береговой) - 1 максимум (ночью) и 1 минимум (днём).

Годовой ход осадков, т.е. изменение количества осадков по месяцам в различных климатических поясах различен. Основные типы годового хода осадков: 1) экваториальный (осадки выпадают равномерно весь год, max пе­риод равноденствия); 2) муссонный (max - летом, min - зимой - субэквато­риальный климатический пояс и восточные окраины материков в умер. и субтроп.поясах, особенно в Евразии и Северной Америке); 3) средиземно­морский (max - зимой, min - летом; западные окраины материков в субтропи­ческом поясе); 4) континентальный умеренного пояса (в теплый период в 2-3 раза больше, при движении вглубь материка общее количество осадков уменьшается); 5) морской умеренного пояса (выпадают равномерно по сезо­нам, небольшой max в осенне-зимнее время).

ВЛАЖНОСТЬ ВОЗДУХА — содержание водяного пара в воздухе, характеризуемое рядом величин. Вода, испарившаяся с поверхности материков и океанов при их нагревании, попадает в атмосферу и сосредотачивается в нижних слоях тропосферы. Температура, при которой воздух достигает насыщения влагой при данном содержании водяного пара и неизменном давлении, называется точкой росы.

Влажность характеризуется следующими показателями:

Абсолютная влажность (лат. absolutus — полный). Она выражается массой водяного пара в 1 м³ воздуха. Исчисляется в граммах водяного пара на 1 м³ воздуха. Чем выше температура воздуха, тем больше абсолютная влажность, так как больше воды при нагревании переходит из жидкого состояния в парообразное. Днем абсолютная влажность больше, чем ночью. Показатель абсолютной влажности зависит от географического положения данной точки: в полярных широтах, например, она равна до 1 г. на 1 м³ водяного пара, на экваторе до 30 грамм на 1 м³; в Батуми (Грузия, побережье Черного моря) абсолютная влажность составляет 6 г. на 1 м³, а в Верхоянске (Россия, Северо-Восточная Сибирь) — 0,1 грамма на 1 м³. От абсолютной влажности воздуха в большой степени зависит растительный покров местности;

Относительная влажность. Это отношение количества влаги, находящейся в воздухе, к тому количеству, которое он может содержать при той же температуре. Исчисляется относительная влажность в процентах. Например, относительная влажность равна 70%. Это значит, что воздух содержит 70% того количества пара, которое он может вместить при данной температуре. Если суточный ход абсолютной влажности прямо пропорционален ходу температур, то относительная влажность обратно пропорциональна этому ходу. Человек чувствует себя хорошо при относительной влажности, равной 40-75%. Отклонение от нормы вызывает болезненное состояние организма.

Воздух в природе редко бывает насыщенным водяными парами, но всегда содержит какое-то его количество. Нигде на Земле не была зарегистрирована относительная влажность, равная 0%. На метеорологических станциях влажность измеряется с помощью прибора гигрометра, кроме того, используются приборы-самописцы — гигрографы;

Воздух насыщенный и ненасыщенный. При испарении воды с поверхности океана или суши воздух не может вмещать водяной пар беспредельно. Этот предел зависит от температуры воздуха. Воздух, который больше не может вместить влагу, называется насыщенным. Из этого воздуха при малейшем охлаждении его начинают выделяться капельки воды в виде росы, туманов. Это происходит потому, что вода при охлаждении переходит из газообразного состояния (пар) в жидкое. Воздух, находящийся над сухой и теплой поверхностью, обычно содержит водяного пара меньше, чем мог бы содержать при данной температуре. Такой воздух называется ненасыщенным. При его охлаждении не всегда выделяется вода. Чем воздух теплее, тем больше его способность к влагопоглощению. Например, при температуре —20°С воздух содержит не более 1 г/м³ воды; при температуре + 10°С — около 9 г/м³, а при +20°С — около 17 г/м³. Поэтому при кажущейся сильной влажности воздуха в тундре и его сухости в степи абсолютная влажность их может быть одинакова благодаря их разнице в температуре.

Расчет влажности воздуха имеет большое значение не только для определения погоды, но и для проведения многих технических мероприятий, при хранении книг и музейных картин, при лечении легочных болезней и особенно при орошении полей.

Общие сведения

Влажность зависит от природы вещества, а в твёрдых телах, кроме того, от степени измельчённости или пористости . Содержание химически связанной, так называемой конституционной воды, например гидроокисей, выделяющейся только при химическом разложении, а также воды кристаллогидратной не входит в понятие влажности.

Единицы измерения и особенности определения понятия «влажность»

  • Влажность обычно характеризуется количеством воды в веществе, выраженным в процентах (%) от первоначальной массы влажного вещества (массовая влажность ) или её объёма (объёмная влажность ).
  • Влажность можно характеризовать также влагосодержанием, или абсолютной влажностью - количеством воды, отнесённым к единице массы сухой части материала. Такое определение влажности широко используется для оценки качества древесины.

Эту величину не всегда можно точно измерить, так как в ряде случаев невозможно удалить всю неконденсированную воду и взвесить предмет до и после этой операции.

  • Относительная влажность характеризует содержание влаги по сравнению с максимальным количеством влаги, которое может содержаться в веществе в состоянии термодинамического равновесия . Обычно относительную влажность измеряют в процентах от максимума.

Методы определения

Титратор Карла Фишера

Установление степени влажности многих продуктов, материалов и т. п. имеет важное значение. Только при определённой влажности многие тела (зерно, цемент и др.) являются пригодными для той цели, для которой они предназначены. Жизнедеятельность животных и растительных организмов возможна только в определённых диапазонах влажности и относительной влажности воздуха. Влажность может вносить существенную погрешность в вес предмета. Килограмм сахара или зерна с влажностью 5 % и 10 % будет содержать разное количество сухого сахара или зерна.

Измерение влажности определяется высушиванием влаги и титрованием влаги по Карлу Фишеру . Эти способы являются первичными. Помимо них разработано множество других, которые калибруются по результатам измерений влажности первичными способами и по стандартным образцам влажности.

Влажность воздуха

Влажность воздуха - это величина, характеризующая содержание водяных паров в атмосфере Земли - одна из наиболее существенных характеристик погоды и климата .

Относительная влажность обычно выражается в процентах.

Относительная влажность очень высока в экваториальной зоне (среднегодовая до 85 % и более), а также в полярных широтах и зимой внутри материков средних широт. Летом высокой относительной влажностью характеризуются муссонные районы. Низкие значения относительной влажности наблюдаются в субтропических и тропических пустынях и зимой в муссонных районах (до 50 % и ниже).

С высотой влажность быстро убывает. На высоте 1,5-2 км упругость пара в среднем вдвое меньше, чем у земной поверхности. На тропосферу приходится 99 % водяного пара атмосферы. В среднем над каждым квадратным метром земной поверхности в воздухе содержится около 28,5 кг водяного пара.

Величины измерения влажности газа

Для обозначения содержащейся в воздухе влаги используются следующие величины:

абсолютная влажность воздуха масса водяного пара, содержащаяся в единице объёма воздуха, то есть плотность содержащегося в воздухе водяного пара, [г/м³]; в атмосфере колеблется от 0,1-1,0 г/м³ (зимой над материками) до 30 г/м³ и более (в экваториальной зоне); максимальная влажность воздуха (граница насыщения) количество водяного пара, которое может содержаться в воздухе при определённой температуре в термодинамическом равновесии (максимальное значение влажности воздуха при заданной температуре), [г/м³ ]. При повышении температуры воздуха его максимальная влажность увеличивается; упругость пара , давление пара парциальное давление , которое оказывает водяной пар, содержащийся в воздухе (давление водяного пара как часть атмосферного давления). Единица измерения - Па . дефицит влажности разность между максимально возможным и фактическим давлением водяного пара [Па] (при данных условиях: температуре и давлении воздуха) , то есть между упругостью насыщения и фактической упругостью пара ; относительная влажность воздуха отношение давления пара к давлению насыщенного пара, то есть абсолютной влажности воздуха к максимальной [% относительной влажности]; точка росы температура газа, при которой газ насыщается водяным паром °C . Относительная влажность газа при этом составляет 100 %. С дальнейшим притоком водяного пара или при охлаждении воздуха (газа) появляется конденсат . Таким образом, хотя роса и не выпадает при температуре −10 или −50 °C, выпадает изморозь , иней , лёд или снег , точка росы в −10 или −50 °C существует и соответствует 2,361 и 0,063 г воды на 1м³ воздуха или другого газа под давлением одна атмосфера; удельная влажность масса водяного пара в граммах на килограмм увлажнённого воздуха [г/кг], то есть отношение масс водяного пара и увлажнённого воздуха; температура мокрого термометра температура, при которой газ насыщается водяным паром при постоянной энтальпии воздуха. Относительная влажность газа при этом составляет 100 %, влагосодержание увеличивается, а энтальпия равна начальной. соотношение компонентов смеси (содержание водяного пара) масса водяного пара в граммах на килограмм сухого воздуха [г/кг], то есть соотношение масс водяного пара и сухого воздуха.

Примечания

Литература

  • Усольцев В. А. Измерение влажности воздуха. - Л. : Гидрометеоиздат, 1959.
  • Берлинер М. А. Измерения влажности. - Изд. 2-е, перераб. и доп. - М .: Энергия, 1973.

См. также