Состояния тел физика. Агрегатные состояния вещества

В зависимости от температуры и давления любое вещество способно принимать различные агрегатные состояния. Каждое такое состояние характеризуется определенными качественными свойствами, которые остаются неизменными в рамках температур и давлений, требуемых для данного агрегатного состояния.

К характерным свойствам агрегатных состояний можно отнести, например, способность тела, находящегося в твердом состоянии, сохранять свою форму, или наоборот – способность жидкого тела изменять форму. Однако, иногда границы между различными состояниями вещества довольно размыты, как в случаях с жидкими кристаллами, либо так называемыми «аморфными телами», которые могут быть упругими как твердые тела и текучими как жидкости.

Переход между агрегатными состояниями может происходить с выделением свободной энергии, изменением плотности, энтропии или других физических величин. Переход от одного агрегатного состояния к другому называется фазовым переходом, а явления, сопровождающие такие переходы – критическими явлениями.

Список известных агрегатных состояний

Твердое тело

Твердые тела, атомы или молекулы которых не образуют кристаллическую решетку.

Твердые тела, атомы или молекулы которых образуют кристаллическую решетку.

Мезофаза

Жидкий кристалл – это такое фазовое состояние, во время которого вещество одновременно обладает как свойствами жидкостей, так и свойствами кристаллов.

Жидкость

Состояние вещества при температурах, выше температуры плавления и ниже температуры кипения.

Жидкость, температура которой превышает температуру кипения.

Жидкость, температура которой меньше температуры кристаллизации.

Состояние жидкого вещества при отрицательном давлении, вызываемым силами Ван-дер-Ваальса (силами притяжения между молекулами).

Состояние жидкости при температуре выше критической точки.

Жидкость, на свойства которой влияют квантовые эффекты.

Состояние вещества, имеющего очень слабые связи между молекулами или атомами. Не поддается математическому описанию идеального газа.

Газ, на свойства которого влияют квантовые эффекты.

Агрегатное состояние, представленное набором отдельных заряженных частиц, суммарный заряд которых в любом объеме системы равен нулю.

Состояние вещества, при котором оно представляет собой набор глюонов, кварков и антикварков.

Кратковременное состояние, во время которого глюонные силовые поля натягиваются между ядрами. Предшествует кварк-глюонной плазме.

Квантовый газ

Газ, состоящий из фермионов, на свойства которого влияют квантовые эффекты.

Газ, состоящий из бозонов, на свойства которого влияют квантовые эффекты.

В природе вода содержится в трех состояниях:

  • твердое состояние (снег, град, лед);
  • жидкое состояние (вода, туман, роса и дождь);
  • газообразное состояние (пар).

С раннего детства, еще в школе изучают разные агрегатные состояния воды: туман, дождевые осадки, град, снег, лёд и тп. Существует , которые в школе изучают подробно. Они каждый день встречаются нам в жизни и влияют на жизнедеятельность. – это состояние воды при определенном температурном режиме и давлении, которое характеризуется в пределе некоторого интервала.

К основным понятиям состояния воды следует внести уточнения, что состояние тумана и облачное состояние не относится к газообразованию. Они появляются при конденсации . Это уникальное свойство воды которое может находиться в трех разных агрегатных состояниях. Три состояния воды жизненно важны для планеты, они образуют гидрологический цикл, обеспечивают процесс круговорота воды в природе. В школе показывают различные опыты по испарению и . В любом уголочке природы вода считается источником жизни. Есть и четвертое состояние, не менее важное – Дерягинская вода (Российский вариант), или как её принято называть в данный момент — Нанотрубочная вода (Американский вариант).

Твердое состояние воды

В сохраняется форма и объем. При пониженной температуре вещество замерзает и превращается в твердое тело. Если высокое давление, то температура затвердевания требуется выше. Твердое тело бывает кристаллическим и аморфным. В кристалле положение атома строго упорядоченно. Формы кристаллов естественные и напоминают многогранник. В аморфном теле точки расположены хаотично и колеблются, в них сохраняется только ближний порядок.

Жидкое состояние воды

В жидком состоянии вода сохраняет свой объем, но ее форма не сохраняется. Под этим понимает, что жидкость занимает лишь часть объема, может протекать по всей поверхности. Изучая в школе вопросы жидкого состояния, следует понимать, что это промежуточное состояние между твердой средой и газовой средой. Жидкости делятся на чистые и состояния смеси. Некоторые смеси очень важны для жизни, например кровь или морская вода. Жидкости могут выполнять функцию растворителя.

Состояние газа

В форма и объем не сохраняются. По-другому газообразное состояние, изучение которого происходит еще в школе, называется водяным паром. Опыты показывают наглядно, что пар невидим, он растворим в воздухе, и показывает относительную влажность. Растворимость зависит от температуры и давления. Насыщенный пар и точка росы – это показатель предельной концентрации. Пар и туман это разные агрегатные состояния.

Четвертое агрегатное состояние — плазма

Изучение плазмы и современные опыты стали рассматриваться чуть в более позднем сроке. Плазмой называется полностью или частично ионизированный газ, она возникает в состоянии равновесия при высокой температуре. В условиях земли образуется газовый разряд. Свойства плазмы определяют его газообразное состояние, за исключением того, что огромную роль во всем этом играет электродинамика. Среди агрегатных состояний плазма самое распространенное во Вселенной. Изучение звезд и межпланетного пространства показало, что вещества находятся в состоянии плазмы.

Как меняются агрегатные состояния?

Изменение процесса перехода из одного состояния в другое:

— жидкость — пар (парообразование и кипение);

— пар — жидкость (конденсация);

— жидкость — лед (кристаллизация);

— лед – жидкость (плавление);

— лед – пар (сублимация);

— пар – лед, образование инея (десублимация).

Вода названа интересным природным земным минералом. Вопросы эти сложные и изучение требуется постоянное. Агрегатное состояние в школе подтверждают проведенные опыты и если возникают вопросы, то опыты наглядно дают разобраться в рассказанном на уроке материале. При испарении жидкость переходит в , процесс способен начаться уже с нуля градусов. При повышении температуры увеличивается . Интенсивность этого подтверждают опыты кипения при 100 градусах. Вопросы испарения находят ответ в испарении с поверхностей озер, рек и даже с суши. При охлаждении получается процесс обратного превращения, когда из газа образуется жидкость. Этот процесс называется конденсацией, когда из водяного пара, находящегося в воздухе образуются мелкие капельки облака.

Ярким примером является ртутный градусник, в котором ртуть представлена в жидком состоянии, при температуре -39 градусов ртуть становится твердым телом. Изменить состояние твердого тела можно, но это потребует дополнительных усилий, например при сгибании гвоздя. Зачастую школьники задают вопросы, о том, как же придают форму твердому телу. Этим занимаются на заводах и в специализированных цехах на специальном оборудовании. Абсолютно любое вещество может существовать в трех состояниях, в том числе и вода, это зависит от физических условий. При переходе воды из одного состояния в другое изменяется молекулярное расположение и движение, состав молекулы не меняется. Экспериментальные задания помогут понаблюдать за такими интересными состояниями.

Основное общее образование

Линия УМК А. В. Перышкина. Физика (7-9)

Введение: агрегатное состояние вещества

Загадочный окружающий мир не перестает удивлять. Кубик льда, брошенный в стакан и оставленный при комнатной температуре, в считанные минуты превратится в жидкость, а если оставить эту жидкость на подоконнике на более продолжительное время, – и вовсе испарится. Это - самый простой способ наблюдать за переходами одного агрегатного состояния вещества в другое.

Агрегатное состояние - состояние какого-либо вещества, имеющее определенные свойства : способность сохранять форму и объем, иметь дальний или ближний порядок и другие. При изменении агрегатного состояния вещества происходит изменение физических свойств, а также плотности, энтропии и свободной энергии.

Как и почему происходят эти удивительные превращения? Чтобы разобраться в этом, вспомним, что все вокруг состоит из . Атомы и молекулы различных веществ взаимодействуют друг с другом, и именно связь между ними определяет, какое у вещества агрегатное состояние .

Выделяют четыре типа агрегатных веществ:

    газообразное,

Кажется, что химия открывает нам свои тайны в этих удивительных превращениях. Однако это не так. Переход из одного агрегатного состояния в другое, а также или диффузия относятся к физическим явлениям, поскольку в этих превращениях не происходит изменений молекул вещества и сохраняется их химический состав.

Газообразное состояние

На молекулярном уровне газ представляет собой хаотически движущиеся, сталкивающиеся со стенками сосуда и между собой молекулы, которые друг с другом практически не взаимодействуют. Поскольку молекулы газа между собой не связаны, то газ заполняет весь предоставленный ему объем, взаимодействуя и изменяя направление только при ударах друг о друга.

К сожалению, невооруженным глазом и даже с помощью светового микроскопа увидеть молекулы газа невозможно. Однако газ можно потрогать. Конечно, если вы просто попробуете ловить молекулы газов, летающие вокруг, в ладони, то у вас ничего не получится. Но наверняка все видели (или делали это сами), как кто-то накачивал воздухом шину автомобиля или велосипеда, и из мягкой и сморщенной она становилась накачанной и упругой. А кажущуюся «невесомость» газов опровергнет опыт, описанный на странице 39 учебника «Химия 7 класс» под редакцией О.С. Габриеляна .

Это происходит потому, что в замкнутый ограниченный объем шины попадает большое количество молекул, которым становится тесно, и они начинают чаще ударяться друг о друга и о стенки шины, а в результате суммарное воздействие миллионов молекул на стенки воспринимается нами как давление.

Но если газ занимает весь предоставленный ему объем, почему тогда он не улетает в космос и не распространяется по всей вселенной, заполняя межзвездное пространство? Значит, что-то все-таки удерживает и ограничивает газы атмосферой планеты?

Совершенно верно. И это - сила земного тяготения . Для того чтобы оторваться от планеты и улететь, молекулам нужно развить скорость, превышающую «скорость убегания» или вторую космическую скорость, а подавляющее большинство молекул движутся значительно медленнее.

Тогда возникает следующий вопрос: почему молекулы газов не падают на землю, а продолжают летать? Оказывается, благодаря солнечной энергии молекулы воздуха имеют солидный запас кинетической энергии, который позволяет им двигаться против сил земного притяжения.

В сборнике приведены вопросы и задачи различной направленности:расчетные, качественные и графические; технического, практического и исторического характера. Задания распределены по темам в соответствии со структурой учебника «Физика. 9 класс» авторов А. В. Перышкина, Е. М. Гутник и позволяют реализовать требования, заявленные ФГОС к метапредметным, предметным и личностным результатам обучения.

Жидкое состояние

При повышении давления и/или снижении температуры газы можно перевести в жидкое состояние. Еще на заре ХIХ века английскому физику и химику Майклу Фарадею удалось перевести в жидкое состояние хлор и углекислый газ, сжимая их при очень низких температурах. Однако некоторые из газов не поддались ученым в то время, и, как оказалось, дело было не в недостаточном давлении, а в неспособности снизить температуру до необходимого минимума.

Жидкость, в отличие от газа, занимает определенный объем, однако она также принимает форму заполняемого сосуда ниже уровня поверхности. Наглядно жидкость можно представить как круглые бусины или крупу в банке. Молекулы жидкости находятся в тесном взаимодействии друг с другом, однако свободно перемещаются относительно друг друга.

Если на поверхности останется капля воды, через какое-то время она исчезнет. Но мы же помним, что благодаря закону сохранения массы-энергии, ничто не пропадает и не исчезает бесследно. Жидкость испарится, т.е. изменит свое агрегатное состояние на газообразное.

Испарение - это процесс преобразования агрегатного состояния вещества, при котором молекулы, чья кинетическая энергия превышает потенциальную энергию межмолекулярного взаимодействия, поднимаются с поверхности жидкости или твердого тела .

Испарение с поверхности твердых тел называется сублимацией или возгонкой . Наиболее простым способом наблюдать возгонку является использование нафталина для борьбы с молью. Если вы ощущаете запах жидкости или твердого тела, значит происходит испарение. Ведь нос как раз и улавливает ароматные молекулы вещества.

Жидкости окружают человека повсеместно. Свойства жидкостей также знакомы всем - это вязкость, текучесть. Когда заходит разговор о форме жидкости, то многие говорят, что жидкость не имеет определенной формы. Но так происходит только на Земле. Благодаря силе земного притяжения капля воды деформируется.

Однако многие видели как космонавты в условиях невесомости ловят водяные шарики разного размера. В условиях отсутствия гравитации жидкость принимает форму шара. А обеспечивает жидкости шарообразную форму сила поверхностного натяжения. Мыльные пузыри – отличный способ познакомиться с силой поверхностного натяжения на Земле.

Еще одно свойство жидкости - вязкость. Вязкость зависит от давления, химического состава и температуры. Большинство жидкостей подчиняются закону вязкости Ньютона, открытому в ХIХ веке. Однако есть ряд жидкостей с высокой вязкостью, которые при определенных условиях начинают вести себя как твердые тела и не подчиняются закону вязкости Ньютона. Такие растворы называются неньютоновскими жидкостями. Самый простой пример неньютоновской жидкости - взвесь крахмала в воде. Если воздействовать на неньютоновскую жидкость механическими усилиями, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело.

Твёрдое состояние

Если у жидкости, в отличие от газа, молекулы движутся уже не хаотически, а вокруг определенных центров, то в твёрдом агрегатном состоянии вещества атомы и молекулы имеют четкую структуру и похожи на построенных солдат на параде. И благодаря кристаллической решетке твердые вещества занимают определенный объем и имеют постоянную форму.

При определенных условиях вещества, находящиеся в агрегатном состоянии жидкости, могут переходить в твердое, а твердые тела, наоборот, при нагревании плавиться и переходить в жидкое.

Это происходит потому, что при нагревании увеличивается внутренняя энергия, соответственно молекулы начинают двигаться быстрее, а при достижении температуры плавления кристаллическая решетка начинает разрушаться и изменяется агрегатное состояние вещества. У большинства кристаллических тел объем увеличивается при плавлении, но есть исключения, например – лед, чугун.

В зависимости от вида частиц, образующих кристаллическую решетку твердого тела, выделяют следующую структуру:

    молекулярную,

    металлическую.

У одних веществ изменение агрегатных состояний происходит легко, как, например, у воды, для других веществ нужны особые условия (давление, температура). Но в современной физике ученые выделяют еще одно независимое состояние вещества - плазма.

Плазма - ионизированный газ с одинаковой плотностью как положительных, так и отрицательных зарядов . В живой природе плазма есть на солнце, или при вспышке молнии. Северное сияние и даже привычный нам костер, согревающий своим теплом во время вылазки на природу, также относится к плазме.

Искусственно созданная плазма добавляет яркости любому городу. Огни неоновой рекламы - это всего лишь низкотемпературная плазма в стеклянных трубках. Привычные нам лампы дневного света тоже заполнены плазмой.

Плазму делят на низкотемпературную - со степенью ионизации около 1% и температурой до 100 тысяч градусов, и высокотемпературную - ионизация около 100% и температурой в 100 млн градусов (именно в таком состоянии находится плазма в звездах).

Низкотемпературная плазма в привычных нам лампах дневного света широко применяется в быту.

Высокотемпературная плазма используется в реакциях термоядерного синтеза и ученые не теряют надежду использовать ее в качестве замены атомной энергии, однако контроль в этих реакциях очень сложен. А неконтролируемая термоядерная реакция зарекомендовала себя как оружие колоссальной мощности, когда 12 августа 1953 года СССР испытал термоядерную бомбу.

Купить

Для проверки усвоения материала предлагаем небольшой тест.

1. Что не относится к агрегатным состояниям:

    жидкость

    свет +

2. Вязкость ньютоновских жидкостей подчиняется:

    закону Бойля-Мариотта

    закону Архимеда

    закону вязкости Ньютона +

3. Почему атмосфера Земли не улетает в открытый космос:

    потому что молекулы газа не могут развить вторую космическую скорость

    потому что на молекулы газа воздействует сила земного притяжения +

    оба ответа правильные

4. Что не относится к аморфным веществам:

  • сургуч
  • железо +

5.При охлаждении объем увеличивается у:

  • льда +

#ADVERTISING_INSERT#

: [в 30 т.] / гл. ред. А. М. Прохоров ; 1969-1978, т. 1).

  • Агрегатные состояния // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Советская энциклопедия (тт. 1-2); Большая Российская энциклопедия (тт. 3-5), 1988-1999. - ISBN 5-85270-034-7 .
  • Владимир Жданов. Плазма в космосе (неопр.) . Кругосвет . Дата обращения 21 февраля 2009. Архивировано 22 августа 2011 года.
  • В природе имеются некоторые жидкости, которые в обычных условиях эксперимента невозможно перевести при охлаждении в кристаллическое состояние. Молекулы отдельных органических полимеров столь сложны, что образовать регулярную и компактную решётку не могут - при охлаждении всегда переходят только в стеклообразное состояние (см. подробнее - DiMarzio E. A. Equilibrium theory of glasses // Ann. New York Acad. Sci. 1981. Vol. 371. P. 1-20). Редкий вариант «некристаллизуемости» жидкости - переход в стеклообразное состояние при температурах, близких к температуре ликвидуса T L или даже более высоких… Подавляющее большинство жидкостей при температурах ниже T L при больших или меньших изотермических выдержках, но в разумной с точки зрения эксперимента длительности, всегда переходят в кристаллическое состояние. Для жидкостей определённых химических соединений подразумевается не T L , а температура плавления кристаллов, но для упрощения - точки отсутствия (солидус) и начала кристаллизации здесь обозначены T L вне зависимости от однородности вещества. Возможность перехода из жидкого в стеклообразное состояние обусловлена скоростью охлаждения в той области температур, где наиболее высока вероятность кристаллизации - между T L и нижней границей интервала стеклования. Чем быстрее охлаждается вещество от состояния стабильной жидкости, тем вероятней то, что оно, минуя кристаллическую фазу, перейдёт в стеклообразное. Любое вещество, способное перейти в стеклообразное состояние, может характеризоваться так называемой критической скоростью охлаждения - минимальной допустимой, при которой оно после охлаждения обратимо для перехода в стеклообразное состояние. - Шульц М. М. , Мазурин О. В. ISBN 5-02-024564-X
  • Шульц М. М. , Мазурин О. В. Современное представление о строении стёкол и их свойствах. - Л.: Наука. 1988 ISBN 5-02-024564-X
  • "Фермионный конденсат" (неопр.) . scientific.ru. Архивировано 22 августа 2011 года.
  • K. v. Klitzing, G. Dorda, M. Pepper New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance Phys. Rev. Lett. 45 , 494 (1980) DOI :10.1103/PhysRevLett.45.494
  • Нобелевский лауреат по физике за 1985 год
  • C. Fuchs, H. Lenske, H.H. Wolter. Dencity Dependent Hadron Field Theory (неопр.) . arxiv.org (29.06.1995). Дата обращения 30 ноября 2012.
  • И. М. Дремин, А. В. Леонидов. Кварк-глюонная среда (неопр.) С. 1172. Успехи физических наук (Ноябрь 2010 года). doi :10.3367/UFNr.0180.201011c.1167 . - УФН 180 1167–1196 (2010). Дата обращения 29 марта 2013. Архивировано 5 апреля 2013 года.
  • Агрегатное состояние - это состояние вещества в определенном интервале температур и давлений, характеризуется свойствами: способностью (твердое тело) или неспособностью (жидкость, газ) сохранять объем и форму; наличием или отсутствием дальнего (твердое тело) или ближнего (жидкость) порядка и другими свойствами.

    Вещество может находиться в трех агрегатных состояниях: твердом, жидком или газообразном, в настоящее время выделяют дополнительно плазменное (ионное) состояние.

    В газообразном состоянии расстояние между атомами и молекулами вещества велико, силы взаимодействия малы и частицы, хаотично перемещаясь в пространстве, обладают большой кинетической энергией , превышающей потенциальную энергию. Материал в газообразном состоянии не имеет ни своей формы, ни объема. Газ заполняет все доступное пространство. Это состояние свойственно для веществ с малой плотностью.

    В жидком состоянии сохраняется лишь ближний порядок атомов или молекул , когда в объеме вещества периодически возникают отдельные участки с упорядоченным расположением атомов, однако взаимная ориентация этих участков также отсутствует. Ближний порядок неустойчив и под действием тепловых колебаний атомов может либо исчезать, либо возникать вновь. Молекулы жидкости не имеют определенного положения, и в то же время им недоступна полная свобода перемещения. Материал в жидком состоянии своей формы не имеет, сохраняет лишь объем. Жидкость может занимать только часть объема сосуда, но свободно перетекать по всей поверхности сосуда. Жидкое состояние обычно считают промежуточным между твердым телом и газом.

    В твердом веществе порядок расположения атомов становится строго определенным, закономерно упорядоченным, силы взаимодействия частиц взаимно уравновешены, поэтому тела сохраняют свою форму и объем. Закономерно упорядоченное расположение атомов в пространстве характеризует кристаллическое состояние, атомы образуют кристаллическую решетку.

    Твердые тела имеют аморфное или кристаллическое строение. Для аморфных тел характерен только ближний порядок в расположении атомов или молекул, хаотичное расположение атомов, молекул или ионов в пространстве. Примерами аморфных тел являются стекло, пек, вар, внешне находящиеся в твердом состоянии, хотя на самом деле они медленно текут, подобно жидкости. Определенной температуры плавления у аморфных тел, в отличие от кристаллических, нет. Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями.

    Большинство твердых тел имеет кристаллическое строение, которое отличается упорядоченным расположением атомов или молекул в пространстве. Для кристаллической структуры свойственен дальний порядок, когда элементы структуры периодически повторяются; при ближнем порядке такое правильное повторение отсутствует. Характерной особенностью кристаллического тела является способность сохранять форму. Признаком идеального кристалла, моделью которого служит пространственная решетка, является свойство симметрии. Под симметрией понимается теоретическая способность кристаллической решетки твердого тела совмещаться самой с собой при зеркальном отражении ее точек от некоторой плоскости, называемой плоскостью симметрии. Симметрия внешней формы отражает симметрию внутренней структуры кристалла. Кристаллическую структуру имеют, например, все металлы, для которых характерны два типа симметрии: кубическая и гексагональная.


    В аморфных структурах с неупорядоченным распределением атомов свойства вещества в разных направлениях одинаковы, т. е стеклообразные (аморфные) вещества изотропны.

    Для всех кристаллов характерна анизотропия . В кристаллах расстояния между атомами упорядочены, но в разных направлениях степень упорядоченности может быть неодинаковой, что приводит к различию свойств вещества кристалла в разных направлениях. Зависимость свойств вещества кристалла от направления в его решетке называют анизотропией свойств. Анизотропия проявляется при измерении как физических, так и механических и других характеристик. Существуют свойства (плотность, теплоемкость), не зависящие от направления в кристалле. Большинство же характеристик зависит от выбора направления.

    Измерить свойства возможно у объектов, имеющих определенный материальный объем: размеры - от нескольких миллиметров до десятков сантиметров. Эти объекты со строением, идентичным кристаллической ячейке, называются монокристаллами.

    Анизотропия свойств проявляется в монокристаллах и практически отсутствует в поликристаллическом веществе, состоящем из множества мелких хаотично ориентированных кристаллов. Поэтому поликристаллические вещества называют квазиизотропными.

    Кристаллизация полимеров, молекулы которых могут располагаться упорядоченно с образованием надмолекулярных структур в виде пачек, клубков (глобул), фибрилл и пр., происходит в определенном интервале температур. Сложное строение молекул и их агрегатов определяет специфику поведения полимеров при нагреве. Они не могут перейти в жидкое состояние с низкой вязкостью, не имеют газообразного состояния. В твердом виде полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях. Полимеры с линейными или разветвленными молекулами при изменении температуры могут переходить из одного состояния в другое, что проявляется в процессе деформации полимера. На рис. 9 приведена зависимость деформации от температуры.

    Рис. 9 Термомеханическая кривая аморфного полимера : t c , t т, t р - температуры стеклования, текучести и начала химического разложения соответственно; I - III - зоны стеклообразного, высокоэластического и вязкотекучего состояния соответственно; Δl - деформация.

    Пространственная структура расположения молекул определяет только стеклообразное состояние полимера. При низких температурах все полимеры деформируются упруго (рис. 9, зона I ). Выше температуры стеклования t c аморфный полимер с линейной структурой переходит в высокоэластическое состояние (зона II ), и его деформация в стеклообразном и высокоэластическом состояниях обратима. Нагрев выше температуры текучести t т переводит полимер в вязкотекучее состояние (зона III ). Деформация полимера в вязкотекучем состоянии необратима. Аморфный полимер с пространственной (сетчатой, сшитой) структурой не имеет вязкотекучего состояния, температурная область высокоэластического состояния расширяется до температуры разложения полимера t р. Такое поведение характерно для материалов типа резин.

    Температура вещества в любом агрегатном состоянии характеризует среднюю кинетическую энергию его частиц (атомов и молекул). Эти частицы в телах обладают в основном кинетической энергией колебательных движений относительно центра равновесия, где энергия минимальна. При достижении некоторой критической температуры твердый материал теряет свою прочность (устойчивость) и расплавляется, а жидкость превращается в пар: кипит и испаряется. Этими критическими температурами являются температуры плавления и кипения.

    При нагреве кристаллического материала при определенной температуре молекулы двигаются настолько энергично, что жесткие связи в полимере нарушаются и кристаллы разрушаются - переходят в жидкое состояние. Температура, при которой кристаллы и жидкость находятся в равновесии, называется точкой плавления кристалла, или точкой затвердевания жидкости. Для иода эта температура равна 114 о С.

    Каждый химический элемент обладает индивидуальной температурой плавления t пл, разделяющей существование твердого тела и жидкости, и температурой кипения t кип, соответствующей переходу жидкости в газ. При этих температурах вещества находятся в термодинамическом равновесии. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других физических величин.

    Для описания различных состояний в физике используется более широкое понятие термодинамической фазы. Явления, описывающие переходы из одной фазы в другую, называют критическими.

    При нагревании вещества претерпевают фазовые превращения. Медь при плавлении (1083 о С) превращается в жидкость, в которой атомы имеют только ближний порядок. При давлении 1 атм медь кипит при 2310 о С и превращается в газообразную медь с беспорядочно расположенными атомами меди. В точке плавления давления насыщенного пара кристалла и жидкости равны.

    Материал в целом представляет собой систему.

    Система - группа веществ, объединенных физическими, химическими или механическими взаимодействиями. Фазой называют однородную часть системы, отделенную от других частей физическими границами раздела (в чугуне: графит + зерна железа; в воде со льдом: лед + вода). Составные части системы - это различные фазы, образующие данную систему. Компоненты системы - это вещества, образующие все фазы (составные части) данной системы.

    Материалы, состоящие из двух и более фаз, представляют собой дисперсные системы . Дисперсныесистемы разделяют на золи, поведение которых напоминает поведение жидкостей, и гели с характерными свойствами твердых тел. В золях дисперсионной средой, в которой распределено вещество, является жидкость, в гелях преобладает твердая фаза. Гелями являются полукристаллический металл, бетон, раствор желатина в воде при низкой температуре (при высокой температуре желатин переходит в золь). Гидрозолем называют дисперсию в воде, аэрозолем - дисперсию в воздухе.

    Диаграммы состояния.

    В термодинамической системе каждая фаза характеризуется такими параметрами, как температура Т , концентрация с и давление Р . Для описания фазовых превращений используется единая энергетическая характеристика - свободная энергия Гиббса ΔG (термодинамический потенциал).

    Термодинамика при описании превращений ограничивается рассмотрением состояния равновесия. Равновесное состояние термодинамической системы характеризуется неизменностью термодинамических параметров (температуры и концентрации, так как в технологических обработках Р = const) во времени и отсутствием в ней потоков энергии и вещества - при постоянстве внешних условий. Фазовое равновесие - равновесное состояние термодинамической системы, состоящей из двух или большего числа фаз.

    Для математического описания условий равновесия системы существует правило фаз , выведенное Гиббсом. Оно связывает число фаз (Ф) и компонентов (К) в равновесной системе с вариантностью системы, т. е. числом термодинамических степеней свободы (С).

    Число термодинамических степеней свободы (вариантность) системы - это число независимых переменных как внутренних (химический состав фаз), так и внешних (температура), которым можно придавать различные произвольные (в некотором интервале) значения так, чтобы не появились новые и не исчезли старые фазы.

    Уравнение правила фаз Гиббса:

    С = К - Ф + 1.

    В соответствии с этим правилом в системе из двух компонентов (К = 2) возможны следующие варианты степеней свободы:

    Для однофазного состояния (Ф = 1) С = 2, т. е. можно менять температуру и концентрацию;

    Для двухфазного состояния (Ф = 2) С = 1, т. е. можно менять только один внешний параметр (например, температуру);

    Для трехфазного состояния число степеней свободы равно нулю, т. е. нельзя менять температуру без нарушения равновесия в системе (система нонвариантна).

    Например, для чистого металла (К = 1) во время кристаллизации, когда имеются две фазы (Ф = 2), число степеней свободы равно нулю. Это означает, что температура кристаллизации не может быть изменена, пока не закончится процесс и не останется одна фаза - твердый кристалл. После окончания кристаллизации (Ф = 1) число степеней свободы равно 1, поэтому можно менять температуру, т. е. охлаждать твердое вещество, не нарушая равновесия.

    Поведение систем в зависимости от температуры и концентрации описывается диаграммой состояния. Диаграмма состояния воды — система с одним компонентом H 2 O, поэтому наибольшее число фаз, которые одновременно могут находиться в равновесии, равно трем (рис. 10). Эти три фазы — жидкость, лед, пар. Число степеней свободы в этом случае равно нулю, т.е. нельзя изменить ни давление, ни температуру, чтобы не исчезла ни одна из фаз. Обычный лед, жидкая вода и водяной пар могут существовать в равновесии одновременно только при давлении 0,61 кПа и температуре 0,0075°С. Точка сосуществования трех фаз называется тройной точкой (O ).

    Кривая ОС разделяет области пара и жидкости и представляет собой зависимость давления насыщенного водяного пара от температуры. Кривая ОС показывает те взаимосвязанные значения температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом, поэтому она называется кривой равновесия жидкость — пар или кривой кипения.

    Рис 10 Диаграмма состояния воды

    Кривая ОВ отделяет область жидкости от области льда. Она является кривой равновесия твердое состояние — жидкость и называется кривой плавления. Эта кривая показывает те взаимосвязанные пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

    Кривая OA называется кривой сублимации и показывает взаимосвязанные пары значений давления и температуры, при которых в равновесии находятся лед и водяной пар.

    Диаграмма состояния — наглядный способ представления областей существования различных фаз в зависимости от внешних условий, например от давления и температуры. Диаграммы состояния активно используются в материаловедении на разных технологических этапах получения изделия.

    Жидкость отличается от твердого кристаллического тела малыми значениями вязкости (внутреннего трения молекул) и высокими значениями текучести (величина, обратная вязкости). Жидкость состоит из множества агрегатов молекул, внутри которых частицы расположены в определенном порядке, подобно порядку в кристаллах. Природа структурных единиц и межчастичного взаимодействия определяет свойства жидкости. Различают жидкости: моноатомные (сжиженные благородные газы), молекулярные (вода), ионные (расплавленные соли), металлические (расплавленные металлы), жидкие полупроводники. В большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической (жидкой) фазой.

    Жидкие вещества чаще всего представляет собой растворы. Раствор однороден, но не является химически чистым веществом, состоит из растворенного вещества и растворителя (примеры растворителя - вода или органические растворители: дихлорэтан, спирт, четыреххлористый углерод и др.), поэтому представляет собой смесь веществ. Пример - раствор спирта в воде. Однако растворами также являются смеси газообразных (например, воздух) или твердых (сплавы металлов) веществ.

    При охлаждении в условиях малой скорости образования центров кристаллизации и сильного увеличения вязкости может возникнуть стеклообразное состояние. Стекла - это изотропные твердые материалы, получаемые переохлаждением расплавленных неорганических и органических соединений.

    Известно много веществ, переход которых из кристаллического состояния в изотропное жидкое осуществляется через промежуточное жидкокристаллическое состояние. Оно характерно для веществ, молекулы которых имеют форму длинных стержней (палочек) с асимметричным строением. Такие фазовые переходы, сопровождаемые тепловыми эффектами, вызывают скачкообразное изменение механических, оптических, диэлектрических и других свойств.

    Жидкие кристаллы , подобно жидкости, могут принимать форму удлиненной капли или форму сосуда, обладают высокой текучестью, способны к слиянию. Они получили широкое применение в разных областях науки и техники. Их оптические свойства сильно зависят от небольших изменений внешних условий. Эта особенность используется в электрооптических устройствах. В частности, жидкие кристаллы применяют при изготовлении электронных наручных часов, визуальной аппаратуры и др.

    К числу основных агрегатных состояний относится плазма - частично или полностью ионизированный газ. По способу образования различают два вида плазмы: термическую, возникающую при нагревании газа до высоких температур, и газообразную, образующуюся при электрических разрядах в газовой среде.

    Плазмохимические процессы заняли прочное место в ряде отраслей техники. Они применяются для резки и сварки тугоплавких металлов, синтеза разных веществ, широко используют плазменные источники света, перспективно применение плазмы в термоядерных энергетических установках и пр.