История становления генетики как науки. История развития генетики (кратко)


Генетика (от греч. genesis – происхождение) – наука о наследственности и изменчивости организмов.

Основоположником генетики является Иоганн Грегар Мендель (1822-1884). Официальной датой рождения генетики считают 1900-й год, когда были переоткрыты закономерности наследственности, впервые установленные Г. Менделем.

Название науки о наследственности и изменчивости было дано английским генетиком В. Бэтсоном в 1906 году.

В 1865 году Г. Мендель опубликовал книгу «Опыты над растительными гибридами». Основными выводами работы исследователя явились открытые им законы наследования – закон доминирования, закон расщепления признаков в потомстве и закон независимого распределения наследственных факторов при расщеплении. Эти законы переоткрыли в 1900 году три ботаника – голландец Г. Дефриз, немец К. Корренс, австриец Ф. Чермак.

В дальнейшем опыты по гибридизации разных растений и животных показали, что правила наследования признаков имеют универсальный характер и едины для всего органического мира.

Генетики Т. Боверт, У. Сэттон и Э. Вильсон выявили определенную связь между наследственными факторами и хромосомами (1902-1907). Было установлено, что наследственные факторы содержатся в клетке. Ученые сделали вывод о том, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом.

Решающее значение для обоснования хромосомной теории наследственности имели опыты Г. Моргана (1866-1945) и его учеников, выполненные на дрозофиле (1910). Было установлено, что гены расположены в хромосомах в линейном порядке. Гены одной хромосомы образуют группу сцепления и, как правило, наследуются совместно, однако, в связи с кроссинговером может происходить их перекомбинация. В трудах Моргана нашел отражение важнейший принцип генетики – единство дискретности и непрерывности наследственного материала.

Большое значение в это время имела теория мутаций, предложенная Г. Дефризом (1901 –1902).

Датский генетик В. Иогансен на основе опытов по изучению наследования признаков у фасоли ввел в генетику важнейшие понятия – чистая линия, ген, генотип, фенотип (1908-1909). В последующие годы (1925-1933) развитие генетики связано с установлением материальных основ наследственности, развертыванием широкого фронта работ по изучению мутогенеза, делимости гена, процессов, происходящих в популяциях и т. д. В этот период были заложены основы биохимической, популяционной, эволюционной, ветеринарной генетики.

Необходимо подчеркнуть, что хромосомная теория явилась крупнейшим обобщением экспериментальных исследований по изучению наследственности и изменчивости организмов. Однако мутации гена представлялись как результат самопроизвольных изменений его, независящих от условий внешней среды. Впервые в мире Г.А. Надсону и Г.С. Филиппову (1925) удалось получить большое количество мутаций у дрожжевых грибков под воздействием лучей радия, а американскому генетику Г. Миллеру (1927) у дрозофилы под влиянием лучей рентгена.

В результате работ ученых (В.В. Сахаров, М.Е. Лобашев, И.А. Раппопорт) в 30-40-х годах ХХ столетия была создана теория химического мутогенеза. Большой вклад в эту теорию внес английский генетик Ш. Ауэрбах.

В 1920 году Н.И. Вавиловым сформулирован закон гомологических рядов, который явился основой для направленного получения мутаций.

Теорию сложного строения гена обосновали А.С. Серебровский и Н.П. Дубинин. Они впервые указали на делимость гена и доказали, что ген состоит из отдельных субъединиц, способных разделится и самостоятельно мутировать.

Работами С. Райта, ДЖ. Холдена и Р. Фишера (1920-1980) были заложены основы генетико-математических методов изучения процессов, происходящих в популяциях. Решающий вклад в создание генетики популяций и эволюционной генетики внес С. Четвериков и его ученики (1920).

Генетика популяций явилась основой теории селекции.

Работами американских биохимиков Г. Бидла и Э. Татума были заложены основы биохимической генетики.

Датой рождения генетики микроорганизмов считают 1943 год, когда появились работы С. Луриа и М. Дельбрука, которые показали, как проводить опыты с микроорганизмами, вести учет их признаков, количественный анализ полученных результатов и т. д. Эти ученые акцентировали внимание экспериментаторов на микроорганизмах, как весьма удобных объектах для генетических исследований, так как микробы гаплоидны, у них одна хромосома, живут 20-30 минут, дают многочисленное потомство, обладают хорошо регистрируемыми признаками и т. д.

В 1944 году американский микробиолог-генетик О. Эвери доказал, что носителем наследственности является ДНК.

В 1952 году А. Херши и М. Чейз установили, что бактериофаги проникают в бактериальные клетки не сами, а только их ДНК, но, не смотря на это, в бактериях происходит формирование зрелых фаговых частиц. Следовательно, ДНК фага является носителем наследственной информации.

Величайшим достижением биологической науки явилась расшифровка строения молекулы ДНК. Сделали это английский ученый Ф. Крик и американский ДЖ. Уотсон (1953).

Американский генетик А.Корнберг искусственно создал вирусную частицу и осуществил синтез ДНК (1957-1958).

М. Мезельсон и Ф. Сталь (1958) показали, что синтез ДНК происходит в клетках на расходящихся нитях двойной спирали.

М. Ниренберг, Г. Маттеи, С. Очоа и Ф. Крик (1961-1962) расшифровали код наследственности и состав нуклеиновых триплетов для всех 20 аминокислот, из которых строятся белковые молекулы. В это же время французские ученые Ф. Жакоб и Ж. Моно разработали общую теорию регуляции белкового синтеза. Они предложили схему генетического контроля синтеза ферментов у бактерий.

В 1969 году Г. Корана осуществил синтез гена клетки дрожжевого грибка, а Д. Бэквитс с сотрудниками выделил ген бета-галоктозидазы из кишечной палочки.

В настоящее время генетика является одной из ведущих наук современной биологии. Для генетики характерно влияние на ее развитие принципов и методов исследования других наук и возрастающая связь со многими биологическими науками. В тоже время в самой генетике идет усиливающийся процесс дифференциации отдельных узких направлений исследований в самостоятельные науки. Так, наряду с общей генетикой возникли: цитогенетика, генетика популяций, биохимическая генетика, генетика человека, ветеринарная генетика, генетика вирусов, математическая генетика, генетика микроорганизмов и т. д.

Генетика микроорганизмов – это наука о наследственности микроорганизмов, их наследуемой и не наследуемой изменчивости. Необходимо отметить, что общая генетика явилась важной основой для развития молекулярной биологии, а генетика микроорганизмов явилась базой для изучения многих вопросов наследственности и изменчивости, т. е. для развития самой генетики. Еще раз необходимо подчеркнуть, что микробы (бактерии, вирусы, грибы, простейшие) явились удобной моделью для проведения генетических исследований. Микробы были использованы как наиболее подходящий объект для изучения природы генетического материала, его организации и функционирования в связи со следующими их особенностями.

У бактерий имеется одна хромосома и поэтому оценка генетических изменений возможна уже в первом поколении клеток. Важным преимуществом микроорганизмов является высокая скорость размножения их, простое химическое строение, простота культивирования и возможность при этом изменений условий выращивания клеток, высокая частота мутаций, способности к комбинированной и мутационной изменчивости.

Благодаря использованию в генетических исследованиях микроорганизмов, генетика была обогащена рядом выдающихся открытий: установлена химическая природа наследственного материала, решена проблема генетического кода ДЖ. Уотсон, Ф. Крик,1953), изучена структура гена (Бензер, 1955), расшифрован способ репликации ДНК (М. Мезельсон, Ф. Сталь, 1958), установлены механизм мутаций и репликаций, выявлено наличие информационной РНК и т. д. Достижения в области генетики микроорганизмов явились основой для создания генной инженерии – важнейшей прикладной отрасли во многих сферах человеческой деятельности.

Развитие генетики микроорганизмов тесно связано с развитием цитологии, а развитие и становление цитологии с созданием и усовершенствованием оптических устройств, позволяющих рассмотреть и изучить клетки. В 1609-1610 г.г. Галилео Галилей сконструировал первый микроскоп. Сконструированный и усовершенствованный им микроскоп давал увеличение в 35-40 раз. И. Фабер дал прибору название «микроскоп».

В 1665 году Роберт Гук, благодаря изменению микроскопа, увидел в пробке ячейки, которые он назвал «клетками».

В 70-х годах 17 века Марчелло Мальпиги описал микроскопическое строение некоторых тканей растений.

Антони ван Левенгук с помощью микроскопа открыл неведомый таинственный мир микроорганизмов (1969).

В 1715 году Х.Г. Гертель впервые использовал зеркало для микроскопии изучаемых объектов, а спустя полтора столетия Э. Аббе создал систему осветительных линз для микроскопа.

В 1781 г. Ф. Фонтана первый увидел и зарисовал животные клетки с их ядрами. В первой половине 19 века Ян Пуркинье усовершенствовал микроскопическую технику, что позволило ему описать клеточное ядро. Он впервые употребил термин «протоплазма». Р. Браун описал ядро как постоянную структуру клетки и предложил термин «nucleus» - «ядро».

Во второй половине XIX века Э. Брюкке (1861) обосновал представление о клетке как элементарном организма. В 1874 г. Ж. Карнуа положил начало цитологии как науке о строении, функции и происхождении клеток.

В. Флемминг описал митоз (1879-1882), О. Гертвич и Э. Страсбургер высказали гипотезу о том, что наследственные признаки заключены в ядре.

В начале 20 века Р. Гаррисон и А. Кадрель разработали методы культивирования клеток.

В 1928-1931 года Е. Руска, М. Кнолль и Б. Боррие сконструировали электронный микроскоп, применение которого позволило открыть неизвестные структуры клетки.

В 20 веке за выдающиеся открытия в области цитологии, генетики и других биологических наук были присуждены Нобелевские премии, Лауреатами которых оказались:

· в 1906 году Камилло Гольджи и Себастьяго Раммон – и – Кахаль за открытия в области структуры нейронов;

· в 1908 году Илья Мечников и Пауль Эрлих за открытия фагоцитоза и антител;

· в 1930 году Карл Ландштейнер за открытие групп крови;

· в 1931 году Отто Варбург за открытие природы и механизмов действия дыхательных ферментов цитохромоксидаз;

· в 1946 году Герман Меллер за открытие мутаций;

· в 1953 году Ханс Креба за открытие цикла лимонной кислоты;

· в 1959 году Артур Корнберг и Северо Очоа за открытие механизмов синтеза ДНК и РНК;

· в 1962 году Френсис Крик, Морис Уилкинсон и Джеймс Уотсон за открытие молекулярной структуры нуклеиновых кислот и их значение в передаче генетической информации;

· в 1963 году Франсуа Жакоб, Андре Львов и Жак Моно за открытие механизма синтеза белка;

· в 1974 году Кристиан де Дюв, Альберт Клод и Джордж Паладе за открытия, касающиеся структурной и функциональной организации клетки (ультраструктура и функция лизосом, комплекса Гольджи, эндопламотического ретикулума).



Хотя история генетики началась в XIX веке, еще древние люди замечали, что животные и растения передают в ряду поколений свои признаки. Другими словами, было очевидно, что в природе существует наследственность. При этом отдельные признаки могут изменяться. То есть помимо наследственности в природе существует изменчивость. Наследственность и изменчивость относятся к основным свойствам живой материи. Долгое время (до XIX-XX веков) истинная причина их существования была скрыта от человека. Это порождало ряд гипотез, которые можно разделить на два типа: прямое наследование и непрямое наследование.

Приверженцы прямого наследования (Гиппократ, Ламарк, Дарвин и др.) предполагали, что дочернему организму через определенные субстанции (геммулы по Дарвину), собирающиеся в половых продуктах, передается информация от каждого органа и каждой части тела родительского организма. По Ламарку следовало, что повреждение или сильное развитие органа напрямую передастся следующему поколению. Гипотезы непрямого наследования (Аристотель в IV в. до н. э., Вейсман в XIX в.) утверждали, что половые продукты образуются в организме отдельно и «не знают» об изменениях в органах тела.

В любом случае обе гипотезы искали «субстрат» наследственности и изменчивости.

История генетики как науки началась с работ Грегора Менделя (1822-1884), который в 60-х годах провел систематические и многочисленные опыты над горохом, установил ряд закономерностей наследственности, впервые высказал предположения об организации наследственного материала. Правильный выбор объекта исследования, изучаемых признаков, а также научная удача позволили ему сформулировать три закона:

Мендель понял, что наследственный материал дискретен, представлен отдельными задатками, передающимися потомству. При этом каждый задаток отвечает за развитие определенного признака организма. Признак обеспечивается парой задатков, пришедших с половыми клетками от обоих родителей.

В то время научному открытию Менделя не придали особого значения. Его законы были переоткрыты в начале XX века несколькими учеными на разных растениях и животных.

В 80-х годах XIX века были описаны митоз и мейоз, в ходе которых между дочерними клетками закономерно распределяются хромосомы. В начале XX века Т. Бовери и У. Сеттон пришли к выводу, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом . То есть к этому периоду времени научный мир понял, в каких структурах заключается «субстрат» наследственности.

У. Бэтсоном был открыт закон чистоты гамет , а наука о наследственности и изменчивости впервые в истории была названа им генетикой . В. Иогансен ввел в науку понятия (1909 г.) , генотипа и фенотипа . В то время ученые уже поняли, что ген представляет собой элементарный наследственный фактор . Но его химическая природа еще не была известна.

В 1906 году было открытоявление сцепления генов , в том числе наследование признаков, сцепленное с полом . Понятие генотипа подчеркивало, что гены организма не просто набор независимых единиц наследственности, они образуют систему, в которой наблюдаются определенные зависимости.

Параллельно с изучением наследственности происходили открытия закономерностей изменчивости. В 1901 году де Фризом были заложены основы учения о мутационной изменчивости, связанной с возникновением изменений в хромосомах, что приводит к возникновению изменений признаков. Чуть позже было обнаружено, что часто возникают при воздействии радиации, определенных химических веществ и др. Таким образом было доказано, что хромосомы являются не только «субстратом» наследственности, но также изменчивости.

В 1910 году, во многом обобщая более ранние открытия, группой Т. Моргана была разработана хромосомная теория :

    Гены находятся в хромосомах и расположены там линейно.

    У каждой хромосомы есть гомологичная ей.

    От каждого из родителей потомок получает по одной из каждых гомологичных хромосом.

    Гомологичные хромосомы содержат одинаковый набор генов, но аллели генов могут быть разными.

    Гены, находящиеся в одной хромосоме, наследуются совместно () при условии их близкого расположения.

Среди прочего в начале XX века была обнаружена внехромосомная, или цитоплазматическая, наследственность, связанная с митохондриями и хлоропластами.

Химический анализ хромосом показал, что они состоят из белков и нуклеиновых кислот. В первой половине XX века многие ученые склонялись к мнению, что белки являются носителями наследственности и изменчивости.

В 40-х годах XX века в истории генетики происходит скачок. Исследования переходят на молекулярный уровень.

В 1944 году обнаруживается, что за наследственные признаки отвечает такое вещество клетки как . ДНК признается носителем генетической информации. Чуть позже было сформулировано, что один ген кодирует один полипептид .

В 1953 г. Д. Уотсон и Ф. Крик расшифровали структуру ДНК. Оказалось что это двойная спираль, состоящая из нуклеотидов . Ими была создана пространственная модель молекулы ДНК.

Позже были открыты следующие свойства (60-е годы):

    Каждая аминокислота полипептида кодируется триплетом (тремя азотистыми основаниями в ДНК).

    Каждую аминокислоту кодирует один триплет или более.

    Триплеты не перекрываются.

    Считывание начинается со стартового триплета.

    В ДНК нет «знаков препинания».

В 70-х годах в истории генетики происходит еще один качественный скачок – развитие генной инженерии . Ученые начинают синтезировать гены, изменять геномы . В это время активно изучаются молекулярные механизмы, лежащие в основе различных физиологических процессов .

В 90-х годах секвенируются геномы (расшифровывается последовательность нуклеотидов в ДНК) многих организмов. В 2003 году был завершен проект по секвенированию генома человека. В настоящее время существуют геномные базы данных . Это дает возможность комплексно исследовать физиологические особенности, заболевания человека и других организмов, а также определять родственную связь между видами. Последнее позволило систематике живых организмов выйти на новый уровень.

В сегодняшний век интеграции очень сложно определить границы практически любой науки. Это касается в том числе и генетики. Мы, конечно, можем использовать заштампованное «наука о наследственности и изменчивости » но это не передает всей сути и масштаба этой дисциплины. При том, что генетика присутствует везде – медицине, истории, криминалистике и даже спорте. А что уж говорить о современной биологии.

Однако еще относительно недавно эта молодая наука была чуть ли не самой обособленной областью биологической науки. И лишь в последней трети прошлого века начался её бурный прогресс.

Как генетика стала всеобъемлющей

Особенностью генетики всегда являлась её синтетическая методология, отличающая её от аналитической методологии остальных направлений биологии. Так, исследуя объект своего изучения, она не делила его на части, а косвенно, наблюдая за целым (соотношение признаков при скрещиваниях) и основываясь на математике, изучала его. Подтверждением же верности её выводов были живые организмы с предсказанными признаками. И как же обособленная наука заняла, возможно, центральное место в современной биологии?

Начиная с 50-х годов ХХ века бурно развивалась другая новая наука - молекулярная биология. Аналитическая наука изначально совершено противоположна генетике. Однако предметы этих двух дисциплин во многом пересекались: они обе занимались изучением передачи и реализации наследственной информации, однако двигались они с противоположных сторон. Генетика, если можно так сказать, «снаружи», молекулярная биология - «изнутри».

И наконец в конце ХХ века генетика и молекулярная биология «встретились», и умозрительные объекты генетических исследований обрели конкретную физико-химическую форму, а молекулярная биология стала синтетической наукой. И именно с этого момента до неразличимости стерлись границы генетики как науки – было невозможно определить, где кончается молекулярная биология или начинается генетика. А для обозначения новой зародившейся синтетической науки появилось название «молекулярная генетика».

А где же классическая генетика?

Титулом «классическая генетика» стали называть генетику домолекулярного периода вместе со всеми её подходами, основанными на теории вероятности и скрещиваниях. Но вместе с этим титулом её отправили в «почетную отставку». Классическая генетика – это наука, в которой не совершается больше открытий, но крайне необходимая для понимания основных закономерностей наследственности и изменчивости, без понимания которых многие области научного знания не достигли бы тех высот, которые им уже покорились.

Когда зародилась генетика?

Принято говорить, что генетика зародилась, когда чешский монах-августинец Грегор Мендель провел свои опыты на горохе. Стоит отметить что научное сообщество того периода не придало значения работам Менделя, и признание они получили спустя не один десяток лет. Но вопросами наследственности и изменчивости ученые занимались и до него, но о их работах вспоминают очень редко.

Так еще в XVIII веке ботаники начали заниматься экспериментальным изучением наследования признаков растений. Стоит упомянуть Йозефа Готлиба Кельрейтера, с 1756 по 1761 г.г., работавшего в Академии наук в Санкт-Петербурге. Именно там он провел первые опыты по искусственной гибридизации растений, результаты 136 были опубликованы.

В опытах с дурманом, табаком и гвоздиками Кельрейтор установил равноправие "матери"и "отца" при передаче признаков потомкам, а также доказал существование пола у растений. Но самым важным вкладом его в науку стал новый метод изучения наследственности - метод искусственной гибридизации. Используя его, французы Огюстен Сажрэ и Шарль Виктор Ноден в середине XIX в., открыли явление доминантности. Все накопленные факты требовали своего осмысления. Именно в осмысление этих фактов и заключается главная залуга Грегора Менделя.

Современная генетика

Современная генетика уже очень далеко шагнула от классического учения Менделя и приобретает все большее значение в сферах медицины, биологии, сельского хозяйства и животноводства. Современная генетика - это прежде всего молекулярная генетика. На ее основе производится селекция полезных микроорганизмов, растений и животных. Генетически модифицированные организмы обладают полезными свойствами, не характерными для их родственников из "дикой" природы. Например, листья генетически модифицированного картофеля являются несъедобными для колорадского жука - злейшего врага картошки и тех, кто ее выращивает. Количество генетически модифицированных продуктов, потребляемых человечеством, растет с каждым годом.

Учитывая тот факт, что огромное количество заболеваний человека являются генетически обусловленными, невозможно переоценить значение генетики для медицины. После того, как в начале 21 века был расшифрован геном человека, методы профилактики наследственных патологий и борьбы с негативным воздействием генов становятся все эффективнее. Например, вероятность и риск развития хронических заболеваний может быть предсказан задолго до рождения ребенка, также появляются методы, позволяющие свести этот риск к минимуму.

Если Вам нужно разобраться с решением задач или по генетике в короткий срок - не стесняйтесь обращаться к нашим авторам. Мы поможем решить любой вопрос с учебой, даже если ситуация кажется безнадежной!

Генетика – это биологическая наука о наследственности и изменчивости организмов и методах управления ими.

Генетика по праву может считаться одной из самых важных областей биологии. Она является научной основой для разработки практических методов селекции, т.е. создания новых пород животных, видов растений, культур микроорганизмов с нужными человеку признаками.

На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Элементарными дискретными единицами наследственности и изменчивости являются гены.

Отцом генетики принято считать чешского монаха Грегора Менделя. Он был учителем физики и естествознания в обычной средней школе, а всё своё свободное время отдавал выращиванию растений в саду монастыря. Мендель занимался этим не из гастрономических интересов, а для изучения закономерностей наследования признаков. Опыты по гибридизации растений проводились и до Менделя, но никто из его предшественников не делал попыток как-то проанализировать свои результаты.

Мендель взял семена гороха с пурпурными цветками и семена сорта, у которого цветки были белые. Когда из них выросли растения и зацвели, он удалил из пурпурного цветка тычинки и перенёс на его пестик пыльцу белого цветка. Через положенное время образовались семена, которые Мендель следующей весной опять посадил на своём огороде. Вскоре взошли новые растения. Результат превзошёл все ожидания: растения оказались с пурпурными цветками, среди них не было ни одного белого. Мендель ни один раз повторял свои опыты, но результат был один и тот же. Итак, гибриды всегда приобретают один из родительских признаков.

Важнейший результат опытов Менделя: в гибридах, полученных от скрещивания растений с разными признаками, не происходит никакого растворения признаков, а один признак (более сильный, или, как назвал его Мендель, доминантный) подавляет другой (более слабый или рецессивный).

Но Мендель не остановился на достигнутом. Он взял и скрестил между собой пурпурные растения гороха, полученные в результате этого опыта. В результате из бутонов появились и пурпурные и белые цветки. Признак белой окраски, исчезнувшей после первого скрещивания, вновь проявил себя. Самым интересным было то, что растений с пурпурными цветками было ровно в 3 раза больше, чем с белыми.

Похожие результаты были получены ещё в четырёх опытах, и во всех случаях отношение доминантных и рецессивных признаков после второго скрещивания составляло в среднем 3:1

Знания, которыми обладал Мендель, были ничтожны, но сделанные им выводы намного опережали свой век. Мендель высказал предположение, которое вскоре стало самым важным из открытых им законов. Он приходит к мысли, что половые клетки (гаметы) несут только по одному задатку каждого из признаков и чисты от других задатков этого же признака. Этот закон получил название закона чистоты гамет, который не потерял своего значения даже сейчас. Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

а) ген как единица рекомбинации.

На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

б) ген как единица мутирования.

В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

в) ген как единица функции.

Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

Но как часто бывает в науке, исследования, которые могли означать рождение нового направления в биологии, были забыты на несколько десятилетий. Настоящая история генетики началась в 1900 году, когда закономерности, обнаруженные ещё Менделем, были снова «открыты» учёными. Три ботаника, голландец Гуго Де Фриз, немец К. Корренс и австриец К. Чермак, занимались изучением закономерностей наследования признаков при скрещивании.

Де Фриз исследовал энотеру, мак и дурман и открыл закон расщепления признаков у гибридов. Корренс открыл тот же закон расщепления, но только на кукурузе, а Чермак - на горохе. Затем, учёные решили изучать мировую литературу по этим вопросам и натолкнулись на исследования Менделя. Оказалось, что ничего нового они не открыли, более того, выводы Менделя были глубже их собственных.

Слава Менделя распространилась моментально. Во всём мире сразу же нашлось множество последователей, которые повторили его опыт на различных объектах. В научном обиходе появился даже особый термин – «менделирующие признаки», - то есть признаки, подчиняющиеся законам Менделя.

Генетика как наука решает следующие задачи: изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и её материальные носители; анализирует способы передачи наследственной информации от одного поколения клеток и организмов к другому; выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на них условий среды обитания; изучает закономерности и механизмы изменчивости и её роль в эволюционном процессе; изыскивает способы исправления повреждённой генетической информации.

Для решения задач используются разные методы исследования.

1. Метод гибридологического анализа. Он позволяет выявлять закономерности наследования отдельных признаков при половом размножении организмов.

2. Цитогенетический метод позволяет изучать кариотип клеток организма и выявлять геномные и хромосомные мутации.

3. Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях.

4. Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.

История развития генетики началась с теории эволюции, которую опубликовал в 1859 английский натуралист и путешественник Чарльз Дарвин в книге “Происхождение видов”.

В 1831 году Дарвин присоединился к пятилетней научной экспедиции изучавшей окаменелости, найденные в породах свидетельствующих о животных, которые жили миллионы лет назад. Также Дарвин отметил, что на Галапагосских островах поддерживается своя собственная разновидность зябликов, которые тесно связаны между собой, но имели незначительные различия, которые, казалось были адаптированы в соответствии с их индивидуальной средой.

По возвращении в Англию, Дарвин на протяжении следующих 20 лет предложил теорию эволюции происходящую в процессе естественного отбора. Книга “Происхождение видов” была кульминацией этих усилий, где он утверждал, что живые существа лучше всего подходит для их среды обитания, у них больше шансов выжить, размножаться и передавать свои характеристики потомкам. Это привело к теории о постепенном изменении видов с течением времени. Его исследования содержат некоторые истины, такие как связь между животной и человеческой эволюцией.

Книга, положившая начало истории развития генетики была крайне противоречивой на то время, так как он бросил вызов доминирующим взглядом в период, когда многие люди буквально думали, что Бог создал мир за семь дней. Он также предположил, что люди были животные и, возможно, произошли от обезьяны. Он отметил, что через тысячи лет эволюции животные имеют свои тела приспособившись к жизни. Если люди произошли от животных на протяжении миллионов лет, определенные врожденные качества остались и сегодня.

1859 – Чарльз Дарвин публикует “Происхождение видов”

Наука узучающая наследственную изменчивость привела к развитию молекулярной биологии для более глубокого понимания механизмов наследственной изменчивости и науке генетика.

Начальный этап развития молекулярной биологии

Начальный этап развития молекулярной биологии принадлежит швейцарскому физиологическому химику Фридриху Мишеру который в 1869 году впервые выявил, как он назвал “нуклеиновые” ядра человеческих белых кровяных клеток, которые мы знаем сегодня, как дезоксирибонуклеиновая кислота (ДНК).

Первоначально Фридрих Мишер изолировал и охарактеризовал компоненты белка, белые кровяные клетки. Для этого он взял из местной хирургической клиники гной-насыщенные бинты, которые он планировал промыть перед фильтрацией белых клеток крови и выделения их различных белков.

Однако, в процессе работы наткнулся на вещество, обладающее необычными химическими свойствами в отличие от белков, с очень высоким содержанием фосфора и устойчивостью к перевариванию белка. Мишер быстро понял, что он открыл новое вещество и почувствовал важность своего открытия. Несмотря на это, потребовалось более 50 лет широкой научной общественности, чтобы оценить его работу.

1869 Фридрих Мишер выделяет “нуклеиновые” кислоты или ДНК

Макромолекула ДНК обеспечивает хранение, передачу из поколения в поколение и реализацию генетической информации

Основные начальные этапы развития генетики

Основные этапы развития генетики начались с учения синтеза дарвинизма и механизмов эволюции живого.

В 1866 году, неизвестный монах Австрийский биолог и ботаник Грегор Мендель был первым человеком, чтобы пролить свет на пути, в котором признаки передаются из поколения в поколение.

Грегор Мендель сегодня считается отцом генетики

Он пользовался не такой известностью в течение своей жизни, и его открытия во многом не принимались в научном сообществе. На самом деле, он был настолько впереди, что потребовалось три десятилетия чтобы его открытия были приняты всерьез.

Между 1856 и 1863 г. Мендель проводил опыты на растениях гороха, пытаясь скрестить и определить “истинную” линию в определенной комбинации. Он выделил семь признаков: высота растения, форма и цвет стручка, форма семян, цвет и положение цветов и окраска.

Он обнаружил, что, когда желтый горох и зеленый горошек растение было выращено вместе, их отпрыски всегда были желтыми. Однако, в следующем поколении растений, зеленый горошек вернулся в соотношении 3:1.

Мендель ввел термины рецессивный и доминантный по отношению к чертам характера, для того, чтобы объяснить этот феномен. Так, в примере, зеленый признак был рецессивным, а желтый признак был доминирующим.

1866 – Грегор Мендель открывает базовые принципы генетики

В 1900 году, через 16 лет после его смерти исследования наследственных признаков гороха Грегора Менделя наконец восприняла широкая научная общественность.

Голландский ботаник и генетик Гуго де Фриз, немецкий ботаник и генетик Карл Эрих Корренс и австриец Эрих Чермак-Зейзенегг все самостоятельно переоткрыли работы Менделя и представили результаты экспериментов по гибридизации с похожими выводами.

В Великобритании, биолог Уильям Бейтсон стал ведущим теоретиком учения Менделя и вокруг него собралась восторженная группа последователей. История развития генетики потребовала три десятилетия чтобы в достаточной степени понять теорию Менделя и найти свое место в эволюционной теории и ввести термин: генетика как наука изучающая наследственную изменчивость .

Этические проблемы развития медицинской генетики

Этические проблемы развития медицинской генетики появились с начала 1900-х годов, когда зародилась наука евгеника (от греч. –«хороший род»). Смысл науки евгеники во влиянии на репродуктивные качества для определенных господствующих рас людей. Наука евгеника – особенно темная глава, которая свидетельствует об отсутствии понимания относительно нового открытие в то время. Термин “евгеника” был впервые использован около 1883 ссылаться на “науку” наследственность и воспитанность.

В 1900 году были переоткрыты теории Менделя, которые нашли регулярной статистической шаблон для характеристики человека как рост и цвет. В угаре исследования, которые последовали, одна мысль ответвляется в социальную теорию науки евгеники. Это было огромное народное движение в первой четверти 20-го века и была представлена как математическая наука, которая может предсказать черты характера и особенности человеческого существа.

Этические проблемы развития медицинской генетики возникли, когда исследователи заинтересовались контролем размножения человеческих существ, так что только люди с лучшими генами могли воспроизвести и улучшить вид. Сейчас это используется в качестве своего рода “научного” расизма, чтобы убедить людей, что некоторые расовые виды были выше других в плане чистоты, интеллекта и т. д. Это свидетельствует об опасностях, которые приходят с практикующей наукой евгеникой без истинного уважения к человечеству в целом.

Многие люди могли видеть, что дисциплина была пронизана неточностями, допущениями и противоречиями, а также поощрение дискриминации и расовой ненависти. Однако, в 1924 году движение получило политическую поддержку, когда Закон об иммиграции был принят большинством в Палате представителей и Сенате США. Закон ввел жесткие квоты на иммиграцию из стран для “низших” рас, таких как Южная Европа и Азия. Когда политический выигрыш и удобная наука евгеника объединили усилия появились этические проблемы развития медицинской генетики.

При продолжении научных исследований и внедрение бихевиоризма (наука о поведении) в 1913 году, популярность евгеники, наконец, начала падать. Ужасы институциональной евгеники в нацистской Германии, которые появились на свет во время 2-й мировой войны полностью уничтожили то, что осталось от движения.

Так, с конца 19 начала 20 века история развития генетики получила основные закономерности передачи наследственных признаков на растительных и животных организмах которые приложили в дальнейшем и к человеку.

Сейчас возникла наука , изучающая процесс старения организма.