Срок службы солнечных панелей. Какой срок службы у солнечных панелей

При помощи автономной солнечной установки можно обеспечить энергией все электроприборы в вашем доме. Главное понять и правильно оценить потребности вашего домохозяйства и те мощности, которые вам необходимо установить.

Компоненты домашней солнечной системы.

Домашняя фотоэлектрическая система, как правило, состоит из 6 базовых элементов:

Рассчитываем количество солнечных батарей и аккумуляторов за 6 шагов

1. Расчет энергопотребления. Первым шагом является составление спецификации, то есть, техническое описание системы. Сначала нужно составить список всех электроприборов в доме, выяснить их потребности и занести в список.

Ниже приведены ориентировочные данные о средних значениях мощностей некоторых приборов. Это приблизительные оценки. Для того, чтобы рассчитать потребляемую мощность системы с инвертором (для приборов переменного тока), нужно сделать поправки для каждого прибора. Потери в инверторе могут быть до 20%. Холодильник, компрессор в момент пуска потребляют мощность в 5-6 раз больше паспортной, поэтому инвертор должен выдерживать кратковременные перегрузки в 2-3 раза выше номинальной мощности. Если приборов с высокой мощностью много, то для более дешевого и оптимального выбора инвертора, следует предусматривать отдельное включение таких приборов при работе.

Использование энергии солнца - это альтернатива невосполняемым источникам энергии. Современные технологии позволяют использовать солнечные батареи для уличного освещения, отопления и освещения небольших домов. Сегодня уже не редкость солнечные батареи для дачи, которые позволяют в летний период обеспечить хозяйство электроэнергией.

Солнечные батареи

Устройство, которое представляет собой большое количество фотоэлектрических преобразователей, соединенных в единую систему, и есть солнечная батарея.

Для солнечной батареи важно наличие прямых солнечных лучей, энергия которых преобразуется в электрический ток.

Устанавливаются батареи в тех районах, где солнечные дни составляют большую часть года. Правда, на эффективность работы солнечных батарей влияет еще и географическая широта. Ведь чем дальше от полюса, тем мощнее солнечные лучи. Но даже в средней полосе России зимой солнечные батареи снижают потребление электроэнергии из общих сетей, а летом появляется возможность даже продавать ее излишки.

Солнечные батареи бывают монокристаллические, поликристаллические и тонкопленочные.

Направленные в разные стороны кристаллы в поликристаллических батареях позволяют снизить зависимость от прямых солнечных лучей. Такие батареи сегодня наиболее распространены, их используют для освещения общественных зданий и частных домов. Часто уже встречается и именно поликристаллического типа.

Солнечные батареи для дачи

Еще совсем недавно главным аргументом против установки была их стоимость. Сегодня эту продукцию начинает выпускать отечественная промышленность, цены на нее становятся ниже, выбор - шире, а сервисное обслуживание - доступнее.

Современные технологии вполне способны справиться с освещением участка и обеспечить работу бытовых приборов. Правда, при этом нужна аккумуляторная а еще контроллер заряда и инвертор, который преобразует постоянный ток в переменный.

Сегодня можно приобрести готовый комплект солнечной миниэлектростанции для дачи или небольшого дома с автономностью работы в течение 24 часов. Мощность такой электростанции - 235 Вт при мощности аккумуляторной батареи 2,4 кВт*ч.

Аккумуляторы для солнечных батарей

Аккумуляторные батареи являются важной частью оборудования современной гелиосистемы.

В яркие солнечные дни солнечные батареи вырабатывают значительно больше электрической энергии, чем потребляют электроприборы, а ночью, когда особенно важно освещение, не работают вообще. Значит, необходимо накапливать и хранить электроэнергию для последующего ее использования.

Аккумуляторная и предназначена для равномерного и бесперебойного электроснабжения.

Также аккумуляторные перекрывают пиковые нагрузки, слишком большие для фотомодулей, используют накопленную энергию в темное время суток, компенсируют разницу выработанной и потребленной энергии в пасмурную погоду.

Способы подключения АКБ

Чаще всего одного аккумулятора не хватает для полноценной работы солнечной электростанции, и приходится использовать несколько однотипных батарей. Специалисты считают, что они вообще должны быть из одной партии.

Для повышения общей емкости системы используются три способа соединения (коммутации) АКБ.

При параллельном соединении складываются емкости всех батарей, а общее напряжение равно напряжению в одном устройстве.

Последовательное соединение, напротив, позволяет просуммировать все напряжения, а емкость остается равной емкости одной батареи в схеме.

Самым производительным является комбинированное последовательно-параллельное соединение, при котором суммируются как напряжения, так и емкости.

Правда, при таком соединении АКБ подвержены разбалансировке, то есть суммарное напряжение будет постоянным расчетным, а вот для каждого отдельного аккумулятора его показания будут меняться. Такое явление приводит к тому, что часть батарей недозаряжается, а часть заряжается выше нормы, и ресурс вырабатывается преждевременно.

Поэтому в комплект каждой гелиосистемы обязательно входит контроллер заряда солнечных батарей и перемычки, с помощью которых соединяют средние точки для самовыравнивания напряжения в АКБ.

Особенности аккумуляторных батарей для гелиосистем

Аккумуляторная батарея для солнечной батареи должна удовлетворять целому ряду требований. Она должна выдерживать большое количество циклов заряда/разряда. При этом саморазряд должен быть минимальным, а величина зарядного тока - большой, диапазон рабочих температур - широким.

Сегодня производители уже выпускают специальные аккумуляторные батареи, так называемые солнечные аккумуляторы, которые этим требованиям полностью отвечают.

Комплект солнечных батарей с такими устройствами и контроллером заряда позволяет накапливать энергию и хранить ее с максимальной эффективностью. А сетевой инвертор - преобразовать ее для подключения бытовых приборов и освещения.

Критерии выбора

Выбирать нужно по нескольким параметрам.

Самый важный из них - это емкость. Исходя из необходимого энергопотребления рассчитывается расчетный показатель емкости, увеличивается на 35-50%, и уже по нему подбирается одно или несколько устройств для параллельного подключения. АКБ с достаточной емкостью держит энергию до 4 суток.

Длительность разрядки и зарядки. Из двух устройств с одинаковым номиналом емкости предпочтительнее то, для которого требуется меньший интервал времени для зарядки.

Емкость свинцового аккумулятора зависит от массы свинца в нем, поэтому чем больше масса АКБ, тем выше его реальная емкость. При выборе нужно обращать внимание на вес и габариты устройства.

Производители задают для своей продукции диапазон рабочих температур и периодичность обслуживания, на эти показатели тоже следует обращать внимание.

В сопроводительных документах всегда указывается срок использования АКБ, количество разрядочных циклов (чем больше этот показатель при прочих равных условиях, тем лучше) и величина саморазряда в месяц.

При расчете параметров аккумуляторной батареи нужно учитывать потери энергии при ее хранении и преобразовании. Эффективность современных устройств для гелиосистем составляет примерно 85%.

Виды аккумуляторов для солнечных батарей

Привычные автомобильные аккумуляторы не рассчитаны на большое количество циклов и отличаются значительным саморазрядом. Для гелиостанций используются совершенно другие устройства.

1. AGM-аккумуляторы, в конструкции которых между абсорбирующими стекломатами находится в связанном состоянии электролит. Такое устройство может эксплуатироваться в любом положении, при низкой цене и глубине заряда около 80% выдерживают до 500 циклов и отличаются высоким уровнем заряда.

Срок из эксплуатации не так велик - 5 лет, и диапазон рабочих температур ограничен 15-25 °С, но они быстро заряжаются - требуется меньше 8 часов на полное восстановление, могут транспортироваться в заряженном состоянии и эксплуатироваться в помещении с недостаточной вентиляцией.

AGM-аккумуляторы быстро выходят из строя из-за перезаряда, но недозаряд переносят вполне удовлетворительно.

2. Гелевая батарея для солнечной батареи тоже может работать в любом положении. Желеобразный гелевый электролит удерживается в порах силикагеля, который служит разделителем для пластин. Неоспоримое достоинство такой конструкции - электроды не осыпаются, потому что все свободное пространство заполнено гелем, а значит, исключена возможность короткого замыкания. Кроме того, они выдерживают полную разрядку и значительное число циклов, примерно в полтора раза больше, чем у аналогичных AGM-аккумуляторов. Но и цена их заметно выше.

Несмотря на цену, гелевые аккумуляторы экономичней, не нуждаются в обслуживании, могут в полностью разряженном состоянии без ущерба находиться несколько дней, потери энергии в них незначительны из-за малого саморазряда.

3. OPzS аккумуляторы, так называемые заливные устройства с жидким электролитом, не требующие обслуживания, разработаны специально для разрядки малыми токами. Они выдерживают очень большое количество глубоких циклов, используются, как правило, в мощных дорогих солнечных системах, и сами стоят достаточно дорого.

Контроллер заряда солнечных батарей

Электронные устройства предназначены для контроля и регулировки уровня заряда на аккумуляторе. Именно они предохраняют АКБ как от полной разрядки, так и от излишней зарядки.

Контроллеры заряда - очень важные элементы солнечных батарей. Они обеспечивают многостадийный заряд АКБ, автоматическое отключение при полном заряде батареи и при минимальном заряде - нагрузок, подключение фотомодулей, когда батарею нужно зарядить, и переподключение нагрузок после зарядки.

Самый дешевый и примитивный вид контроллеров типа On/Off отключает солнечные батареи от АКБ, когда напряжение достигает предельного значения, не давая аккумуляторам зарядиться полностью и тем самым сокращая их ресурс.

PWM-контроллеры, работающие по ШИМ (широтно-импульсная модуляция) - технологии, экономичны и эффективны в районах с высокой активностью солнца. Они прекращают заряд, позволяя аккумулятору при этом полностью зарядиться. Устанавливаются такие устройства в маломощных, до 2 кВт, системах с аккумулятором малой емкости.

МРРТ-контроллеры управляют максимальными энергетическими пиками. Они наиболее эффективны в гелиосистемах, но и значительно дороже устройств других моделей.

Производители аккумуляторов для солнечных батарей

На российском рынке не так много производителей этого вида продукции.

Компания CSB Battery Co., Ltd (Тайвань) предлагает свинцово-кислотные АКБ, изготовленные по со сроком службы до 10 лет, рассчитанные на напряжение 12 В, емкостью от 26 до 100 А*ч по цене от 2,6 до 8,2 тыс. рублей.

Примерно такие же аккумуляторы выпускает Shandong Sacred Sun Power Sources Co., Ltd (Китай).

HAZE Battery Company Ltd (Великобритания) поставляет гелевые АКБ со сроком службы до 12 лет, рабочим напряжение 12 В, емкостью от 15 до 230 А*ч и диапазоном температур от -20 до +50 °С по ценам от 7 до 28 тыс. рублей.

SSKGroup (Россия-Бельгия) выпускает надежные гелевые аккумуляторные батареи для солнечных батарей с пламегасителем со сроком службы 15 лет, емкостью от 100 до 180 А*ч по ценам от 11 до 19 тыс.рублей.

Производители солнечных батарей

Основными производителями солнечных батарей долгое время были Япония, Германия, США и Китай. Российские солнечные батареи собираются из материалов, произведенных в этих странах. Самые популярные отечественные солнечные батареи с доступной ценой изготавливаются из поликристаллического кремния, произведенного в Германии и США.

Сегодня российские производители не только производят солнечные модули, но и разрабатывают новые, как, например, «Квант» в Москве.

Краснодарская компания «Солнечный ветер» производит не только модули, но и готовые домашние гелиостанции. Проектирует готовые гелиосистемы и «СоларИннТех» из Зеленограда.

На отечественном рынке все больше оборудования для гелиосистем, включая готовые типовые проекты. Но при некоторых инженерных навыках и усидчивости можно самостоятельно рассчитать систему для конкретных условий эксплуатации и подобрать необходимое оборудование: солнечные батареи, аккумуляторы, контроллеры разных производителей в широком ценовом диапазоне. При этом можно сэкономить на некоторых составляющих, собрав их самостоятельно из подручных материалов, например, контроллер.

В сети набрел на диссертацию Зезина Дениса Анатольевича от 2014 года на тему

ДЕГРАДАЦИОННЫЕ ПРОЦЕССЫ В ТОНКОПЛЁНОЧНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТАХ

Вашему вниманию представлена последняя глава, где оценена продолжительность жизненного цикла солнечной электростанции и некоторые выводы.

[...]Далее было проведено моделирование простой солнечной станции. При создании макета станции требовалось получить заданную мощность (от 1 до100МВт) при использовании типового модуля (60 монокристаллических пластин, спаянных в виде двух лент по 30 элементов), мощностью 150 Вт (15 В, 10 А). При этом максимальное напряжение по постоянному току не должно превышать 1кВ (использовались требования правил эксплуатации энергоустановок в Евросоюзе).

Для того чтобы удовлетворить этим требованиям, солнечные модули соединялись последовательно до получения максимально возможного напряжения, недостающая мощность вырабатывалась аналогичными цепочками модулей, соединёнными параллельно, за счёт вырабатываемого тока.

Безотказная работа модулей определяется надёжностью самих солнечные ячеек, а также паяных соединений, обеспечивающих электрический контакт между ячейками. При соединении модулей в цепочки необходимо использовать штекеры, поскольку внешние выводы, в отличие от паяных соединений, находятся в непосредственном контакте с окружающей средой. Кроме того, каждая такая цепочка снабжается инвертором, который необходим для преобразования постоянного тока в переменный. По этим причинам безотказная работа солнечной электростанции также зависит от надёжности штекеров и инверторов.

При расчётах надёжности предполагалось, что все необходимые электротехнические соединения и оборудование (паяные соединения, штекеры и инверторы) подчиняются экспоненциальному закону распределения. То есть, их отказы рассматривались только как внезапные, интенсивность которых не меняется со временем.

Средние время наработки на отказ для каждого элемента модели были выбраны близкими к реальным : паяное соединение - 105 [ч] (~10 лет), штекер и инвертор – 5*104 [ч] (~5 лет).

На рисунках представлены результаты моделирования. На этих графиках можно заметить, что благодаря большому количеству включённых параллельно цепочек модулей, вероятность безотказной работы солнечной электростанции, близкая к 100%, имеет место на более длительном промежутке времени. Затем наблюдается стремительное снижение вероятности безотказной работы, пропорциональное количеству элементов. Подобное поведение системы напоминает интегральные схемы с резервированием.

Вероятность безотказной работы стандартного модуля и солнечных электростанций

Вероятность безотказной работы солнечных электростанций разной мощности

Одна из особенностей солнечных электростанций – требование большого количества свободной площади. При этом возможности транспорта ограничивают размер одного фотоэлектрического модуля. Как следствие для постройки электростанции мощностью, например, в 100 МВт из стандартных модулей мощностью, скажем, 100 Вт необходимо сформировать миллион соединений. Кроме того, каждый солнечный модуль также состоит из 20-60 солнечных элементов, которые тоже необходимо соединить. Потребность современных солнечных электростанций в большом количестве соединений напоминает аналогичную потребность электроники при переходе от навесного монтажа к интегральным технологиям.

В качестве мер для повышения надёжности можно предложить использование «умных модулей» - устройств, которые по своему прямому назначению выполняют ту же функцию, что и солнечные модули, однако они снабжены дополнительной электроникой, которая обеспечивает закорачивание вышедших из строя элементов. Подобная система необходима, поскольку один вышедший из строя элемент отключает всю цепочку модулей. Безусловно, на крупных электростанциях большое количество параллельных соединений позволяет отсрочить момент выхода электростанции, но потери мощности будут накапливаться. Подобные системы сейчас только разрабатываются в разрезе обеспечения работы батареи в условиях частичного затенения (например ), поскольку плохо освещённая оказывается фактически не работающей. Подобные разработки могут оказаться полезными и для обеспечения надёжности солнечных батарей.

Перед установкой автономного энергоснабжения возникают обычно два вопроса: «Сколько прослужит система?» и «За какой период она окупится?». Ведь именно от ответов на эти вопросы и зависит целесообразность расходов на приобретение и монтаж автономного контура. Срок службы солнечных панелей различен. Он зависит прежде всего от типа самих панелей.

Сроки службы

Как показали практические испытания, ресурс гелиопанелей составляет не менее 20 лет. После определенного количества времени (15-20 лет, в зависимости от типа и особенностей фотоячеек) наблюдается некоторое снижение мощности, которое и продолжается в дальнейшем. Как правило, батареи на монокристаллах работают до 30 лет, на поликристаллах – 20-25 лет. Тонкопленочные батареи последних поколение также служат порядка 20 лет.

Стандартная гарантия для большинства производителей солнечных панелей варьируется в достаточно значительных пределах – от 10 до 25 лет. Связан такой разброс с особенностями самих фотоячеек, их типом (поли-, моно-), классом («A», «B», «C»), качеством защитного лицевого покрытия и т.д.

Производители гарантируют, что в течение этого срока мощность их продукции снизится не более, чем на 10%. Падение мощности на более значительную величину чревато критическим снижением выработки всей системы, поскольку для солнечных электростанций очень важен каждый ватт произведенной энергии. Батареи из аморфного кремния, как правило, теряют 10-40% мощности в первые сезоны, после чего их выработка «замирает» на этом уровне.

Что влияет на срок службы

Стандартный расчетный срок использования кристаллических солнечных панелей – 30 лет. Чтобы выяснить скорость реального старения элементов, проводятся целые серии разного рода тестов. Они показывают, что сами фотоячейки имеют очень большой ресурс, их деградация после нескольких десятилетий использования минимальна.
Падение же производительности солнечных батарей связано с тремя факторами:

  • разрушение герметизирующей модуль пленки;
  • замутнение пленочной прослойки между фотоячейками и защитным стеклом;
  • разрушение тыльной пленки солнечной батареи.

Для герметизации солнечных панелей (равно как и в качестве пленочной прослойки) применяется пленка EVA (ethylene vinyl acetate, так называемая «этиленвинилацетатная»). Тыльная же сторона панели обычно представляет собой поливинилфосфатную пленку.

Такая пленочная защита необходима для предохранения фотоячеек и паяных соединений панели от действий влаги. Под действием УФ-лучей солнечного спектра пленки постепенно разрушаются, они теряют свою эластичность и легче поддаются механическим воздействиям. Как следствие, ухудшается герметичность и влага начинает активнее просачиваться внутрь панели.

Кроме того, EVA-пленка между стеклом и фотоячейками теряет и свою оптическую прозрачность, что приводит к уменьшению поглощения солнечных лучей. А из-за микрокапель влаги паяные соединения постепенно начинают корродировать, что приводит к увеличению сопротивления контакта, его перегреву и последующему разрушению.

Как правило, производители гарантируют ухудшение работы своих солнечных батарей не более, чем на 20% за 25 лет. Однако это относится только к зарекомендовавшим себя фирмам, которые тщательно следят за качеством продукции. Менее добросовестные компании при сборке панелей экономят на всем, чтобы выставить как можно более низкую итоговую цену продукта.

Такая экономия приводит к тому, что для герметизации используются некачественные (или неподходящие для специфичных условий солнечных батарей) материалы. Как следствие, разрушение контактов может наблюдаться уже на следующий сезон, что приводит к резкому падению мощности (вплоть до 30-40%). Особенно часто подобное явление можно наблюдать на дешевых садовых светильниках с фотобатареями.

Дополнительные факторы

На срок службы влияет и качество самой EVA-пленки, равно как и защитного ламинирующего покрытия. Некачественное покрытие дает ощутимую усадку уже в первый же сезон. Это приводит к практически полной разгерметизации панели, резкому снижению КПД и выходу изделия из строя.

Еще один аспект – толщина соединительных проводников и токопроводящих шин. Она должна быть достаточной для пропускания токов именно той мощности, которая заявлена в паспорте солнечной панели. Причем толщина шины должна быть больше, чем у проводников, соединяющих между собой фотоячейки. Если шина будет слишком тонкой (что нередко встречается в дешевых панелях малоизвестных фирм), то в скором времени она выйдет из строя.

Также влияет на срок работы и качество паяных соединений. Плохо выполненная пайка разрушается очень быстро и без воздействия коррозии, так как такие контакты сами по себе сильно перегреваются. Поэтому надежность паяных соединений – непременное условие длительной работоспособности.

Период окупаемости

Сроки окупаемости солнечных панелей зависят от нескольких факторов:

  • Тип оборудования (поли- или моноячейки, одно- или многослойная структура солнечной батареи). От этого зависят первоначальные расходы, так как стоимость солнечных панелей разных типов варьируется довольно сильно.
  • Количество устанавливаемых панелей. Именно поэтому очень важно заранее провести точный расчет всей системы.
  • Географическая широта, точнее, величина инсоляции: чем больше солнца попадает на рабочую поверхность модуля, тем больше он вырабатывает энергии и тем быстрее «отбивает» затраты.
  • Расценки на энергоресурсы в регионе. От стоимости киловатт-часа электроэнергии будет зависеть разница в стоимости выработанной солнцем энергии и энергии, полученной из центральной электросети. Иными словами, насколько выгоднее вырабатывать «солнечное электричество».

В среднем для частного дома сроки окупаемости составляют 2,5-3,5 года в среднеевропейских странах и 1,5-2 года в южноевропейских. Для России этот показатель варьируется в средних пределах от 2-х до 5-ти лет. Однако нужно помнить, что с совершенствованием технологий изготовления повышается КПД (энерговыработка) панелей, а значит, постепенно снижается и срок окупаемости.

Что влияет на КПД и эффективность работы солнечных батарей?

Сегодня идёт много разговоров вокруг такого понятия, как КПД гелиосистем. Это один из ключевых критериев при оценке эффективности работы солнечных батарей. Увеличение этого показателя является главной задачей на пути снижения затрат на преобразование солнечной энергии и расширения использования гелиосистем. Низкий КПД солнечных батарей является их основным недостатком. Квадратный метр современных фотоэлементов обеспечивает выработку 15─20 процентов от мощности солнечного излучения, попадающего на него. И это при самых благоприятных условиях эксплуатации. В результате для обеспечения необходимого энергоснабжения требуется установка множества солнечных панелей большой площади. Насколько эффективно такое оборудование и от чего зависит его КПД, постараемся разобраться в этой статье. А также поговорим о сроке службы и окупаемости солнечных панелей.

В основе функционирования солнечных панелей лежат свойства полупроводниковых элементов. Падающий на фотоэлектрические панели солнечный свет фотонами выбивает с внешней орбиты атомов электроны. Образовавшееся большое количество электронов обеспечивает электрический ток в замкнутой цепи. Одной или двух панелей для нормальной мощности недостаточно. Поэтому несколько штук объединяют в солнечные батареи. Для получения необходимого напряжения и мощности их подключают параллельно и последовательно. Большее число фотоэлементов дают большую площадь поглощения солнечной энергии и выдают большую мощность.


Теперь непосредственно о самом КПД. Эта величина вычисляется делением мощности электроэнергии на мощность солнечной энергии, попадающей на панель. У современных солнечных батарей эта величина лежит в интервале 12─25 процентов (на практике не выше 15%). Теоретически можно поднять КПД до 80─85 процентов. Такая разница существует из-за материалов для изготовления панелей. В основе лежит кремний, который не поглощает ультрафиолет, а лишь инфракрасный спектр. Получается, что энергия ультрафиолетового излучения уходит впустую.

Одним из направлений повышения КПД является создание многослойных панелей. Такие конструкции состоят из набора материалов, расположенных слоями. Подбор материалов осуществляется так, чтобы улавливались кванты различной энергии. Слой с одним материалом поглощает один вид энергии, со вторым – другой и так далее. В результате можно создавать солнечные батареи с высоким КПД. Теоретически такие многослойные панели могут обеспечить КПД до 87 процентов. Но это в теории, а на практике изготовление подобных модулей проблематично. К тому же они получаются очень дорогие.

На КПД гелиосистем также влияет тип кремния, используемого в фотоэлементах. В зависимости от получения атома кремния их можно разделить на 3 типа:

  • Монокристаллические;
  • Поликристаллические;
  • Панели из аморфного кремния.

Фотоэлементы из монокристаллического кремния имеют КПД 10─15 процентов. Они являются самыми эффективными и имеют стоимость выше остальных. Модели из поликристаллического кремния имеют самый дешевый ватт электроэнергии. Многое зависит от чистоты материалов и в некоторых случаях поликристаллические элементы могут оказаться эффективнее монокристаллов.



Существуют также фотоэлементы из аморфного кремния, на базе которых изготавливают тонкопленочные гибкие панели. Их производство проще, а цена ниже. Но КПД значительно ниже и составляет 5─6 процентов. Элементы из аморфного кремния с течением времени теряют свои характеристики. Для увеличения их производительности добавляют частицы селена, меди, галлия, индия.

От чего зависит эффективность работы солнечных батарей?

На эффективность работы солнечных батарей оказывают влияние несколько факторов:

  • Температура;
  • Угол падения солнечных лучей;
  • Чистота поверхности;
  • Отсутствие тени;
  • Погода.

В идеале угол падения солнечных лучей на поверхность фотоэлемента должен быть прямым. При прочих равных в этом случае будет максимальная эффективность. В некоторых моделях для увеличения КПД в солнечных батареях устанавливается система слежения за солнцем. Она автоматически меняет угол наклона панелей в зависимости от положения солнца. Но это удовольствие не из дешёвых и поэтому встречается редко.

При работе фотоэлементы нагреваются, и это отрицательно сказывается на эффективности их работы. Чтобы избежать потерь при преобразовании энергии следует оставлять пространство панелями и поверхностью, где они закреплены. Тогда под ними будет проходить поток воздуха и охлаждать их.



Несколько раз в год обязательно нужно мыть и протирать панели. Ведь КПД фотоэлектрических панелей прямо зависит от падающего света, а значит, от чистоты поверхности. Если на поверхности есть загрязнения, то эффективность солнечных батарей будет снижаться.

Важно сделать правильную установку батарей. Это означает, что на них не должна падать тень. Иначе эффективность системы в целом будет сильно снижаться. Крайне желательно устанавливать фотоэлементы на южной стороне.

Что касается погоды, то от неё также зависит очень многое. Чем ближе ваш регион к экватору, тем большая плотность излучения будет попадать солнечного излучения на панели. В нашем регионе зимой эффективность может упасть в 2─8 раз. Причины как в уменьшении солнечных дней так и в снеге, попадающим на панели.

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.


А срок окупаемости существенно меньше, чем срок службы. Но многих останавливает первоначальная стоимость батарей. Вкупе с низким КПД у многих людей это вызывает сомнения в выгодности приобретения гелиосистем. Поэтому решение здесь нужно принимать с учётом погоды и климата в вашем регионе, условий использования и т. п.

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.

В среднем срок окупаемости по регионам составляет:

  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.


Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.