Самый быстрый объект на земле. Самые быстрые звезды во вселенной могут набирать скорость света Отголоски Большого взрыва проникают в старый телевизор

Человечество научилось строить очень мощные и высокоскоростные объекты, которые собираются десятилетиями, чтобы потом достигнуть самых отдаленных целей. «Шаттл» на орбите движется со скоростью более 27 тысяч км в час. Ряд космических зондов НАСА, такие как «Гелиос 1», «Гелиос 2» или «Воджер 1» достаточно мощны, чтобы достичь Луны за несколько часов.

Эта статья была переведена с англоязычного ресурса themysteriousworld.com и, конечно же, не совсем соответствует действительности. Многие российские и советские ракетоносители и космические аппараты преодолевали барьер в 11000 км/ч, но на западе, видимо, привыкли этого не замечать. Да и информации о наших космических объектах в свободном доступе довольно немного, во всяком случае о скорости многих российских аппаратов мы так и не смогли узнать.

Вот список из десяти самых быстрых объектов, произведенных человечеством:

✰ ✰ ✰
10

Ракетная тележка

Скорость: 10 385 км/ч

Ракетные тележки фактически используются для тестирования платформ, используемых для ускорения экспериментальных объектов. Во время испытаний тележка имеет рекордную скорость 10385 км/час. На этих устройствах вместо колес используются раздвижные колодки, чтобы можно было развить такую молниеносную скорость. Ракетные тележки приводятся в движение с помощью ракет.

Эта внешняя сила придает начальное ускорение экспериментальным объектам. У тележек также есть длинные, более 3 км, прямые участки пути. Танки ракетных тележек заполнены смазочными материалами, такими как газообразный гелий, так что это помогает экспериментальному объекту развить необходимую скорость. Эти устройства обычно используются для ускорения ракет, авиационных деталей и аварийно-спасательных секций воздушных судов.

✰ ✰ ✰
9

NASA X-43 A

Скорость: 11 200 км/ч

ASA X-43 А представляет собой беспилотный сверхзвуковой летательный аппарат, который запускается с большего самолета. В 2005 году, книга рекордов Гиннеса признала NASA X-43 А самым быстрым самолетом из когда-либо сделанных. Он развивает максимальную скорость 11 265 км/ч, это примерно в 8,4 раза быстрее, чем скорость звука.

NASA X-13 А использует технологию запуска при падении. Сначала этот сверхзвуковой самолет попадает на большую высоту на более крупном самолете, а затем падает. Необходимая скорость достигается с помощью ракеты-носителя. На заключительном этапе, после достижения заданной скорости NASA X-13 работает на своем собственном двигателе.

✰ ✰ ✰
8

Шаттл «Колумбия»

Скорость: 27 350 км/ч

Шаттл «Колумбия» был первым успешным многоразовым космическим кораблем за всю историю освоения космоса. С 1981 года он успешно выполнил 37 миссий. Рекордная скорость шаттла «Колумбия» — 27 350 км/ч. Корабль превысил свою нормальную скорость, когда упал 1 февраля 2003 года.

Обычно шаттл движется со скоростью 27 350 км/ч, чтобы оставаться на нижней орбите Земли. При такой скорости, экипаж космического корабля может увидеть восход и заход солнца несколько раз в течение одного дня.

✰ ✰ ✰
7

Шаттл «Дискавери»

Скорость: 28 000 км/ч

Шаттл «Дискавери» имеет рекордное число успешных миссий, больше, чем любой другой космический корабль. С 1984 года «Дискавери» осуществил 30 успешных рейсов, и его рекорд скорости — 28 000 км/ч. Это в пять раз быстрее, чем скорость пули. Иногда космические аппараты должны двигаться быстрее, чем их обычная скорость 27 350 км/ч. Все зависит от выбранной орбиты и высоты космического аппарата.

✰ ✰ ✰
6

Спускаемый аппарат «Аполлон 10»

Скорость: 39 897 км/ч

Запуск «Аполлон 10» был репетицией миссии НАСА перед прилунением. Во время обратного пути, 26 мая 1969 года аппарат «Аполлон 10» приобрел молниеносную скорость 39 897 км/ч. Книга рекордов Гиннеса зафиксировала рекорд скорости спускаемого аппарата «Аполлон 10» как максимальный рекорд скорости пилотируемого транспортного средства.

На самом деле, модулю «Аполлон 10» была нужна такая скорость, чтобы с лунной орбиты достигнуть атмосферы Земли. Свою миссию «Аполлон 10» также завершил миссию за 56 часов.

Сейчас мы узнаем не о каком то автомобиле или самолете, а о чем то намного и намного быстром. Эти объекты движутся со скоростью 70 тысяч километров в час, быстрее всех рукотворных и природных объектов на Земле

Вот что это такое...


Все сверхпроводники обладают необычным свойством - они «не любят» магнитное поле и стремятся вытолкнуть его наружу, если линии этого поля с ними контактируют. Если сила поля превышает определенное значение, сверхпроводник резко теряет свои свойства и становится «обычным» материалом.

Этот феномен, который , работает неодинаково в разных сверхпроводниках. В сверхпроводниках первого рода магнитное поле не может существовать в принципе, а в их «собратьях» второго рода магнитное поле может проникать на небольшие расстояния в тех точках, где сочетаются сверхпроводящие и несверхпроводящие свойства.

Феномен открыл в 1957 году советский физик Алексей Абрикосов, за что он, а также Виталий Гинзбург и Энтони Леггет получили в 2003 году Нобелевскую премию по физике. Этот же феномен «частичного проникновения» магнитных полей порождает внутри сверхпроводника «воронки», кольцевые электрические токи, которые называют «вихрями Абрикосова».

Квантовый характер этих вихрей, а также их стабильность и предсказуемость давно привлекают внимание физиков, пытающихся создать квантовые или световые компьютеры.

Эмбон и его коллеги из Израиля, Украины и США получили первые снимки вихрей Абрикосова, возникающих внутри сверхпроводника. Чтобы получить фотографии, израильские физики создали сверхчувствительный датчик магнитного поля на базе сверхпроводников, способный «видеть» источники магнитных полей размерами в 50 нанометров и регистрировать изменения силы полей и их направленности.

Датчик ученые использовали для наблюдений за тем, что происходит внутри пленки из свинца, охлажденной до температуры, близкой к абсолютному нулю. В таких условиях свинец превращается в сверхпроводник второго рода, что позволило Эмбону и его коллегам проследить за тем, как воронки ускоряют бег с ростом напряжения.

Когда ученые получили первые результаты замеров, они не поверили глазам - воронки двигались с необычайно высокой скоростью, около 72 тысячи километров в час.

Это почти в 59 раз больше скорости звука и сопоставимо с той скоростью, с которой Земля движется вокруг Солнца, в десятки раз больше скорости движения отдельных атомов и молекул в атмосфере Земли. Кроме того, все рукотворные объекты, даже самые быстрые из них - зонды New Horizons и «Вояджер», движутся медленнее воронок в сверхпроводниках.

Но важен не сам рекорда, а то, что воронки движутся примерно в 50 раз быстрее, чем электроны внутри сверхпроводника. Пока у физиков нет никаких объяснений тому, что разгоняет воронки и почему они периодически сливаются друг с другом и объединяются в цепочки, что противоречит всем представлениям об их поведении.

Как показывают теоретические расчеты Эмбона и его коллег, 72 тысячи километров в час - не предел скорости для этих квантовых структур. Если сверхпроводник охладить еще сильнее и повысить напряжение, то можно будет разогнать воронки еще сильнее. Ученые надеются, что дальнейшие наблюдения за этими объектами помогут раскрыть природу этих вихрей и приблизят нас к созданию «комнатных» сверхпроводников и электроники на их базе.

Статья об исследовании

Наше Солнце вращается вокруг центра Млечного Пути со скоростью 724 000 километров в час. Недавно ученые обнаружили звезды, которые мчатся из нашей галактики со скоростью более 1 500 000 км/ч. Может ли звезда двигаться еще быстрее?

Проведя некоторые расчеты, астрофизики Гарвардского университета Ави Лоеб и Джеймс Гильшон поняли, что да, звезды могут двигаться быстрее. Намного быстрее. Согласно их анализу, звезды могут достигать скорости света. Результаты сугубо теоретические, поэтому никто не знает, может ли такое произойти, пока астрономы не зафиксируют эти сверхскоростные звезды - что, по словам Лоеба, станет возможно с телескопами следующего поколения.

Но скорость - это не все, что получат астрономы после обнаружения. Если такие сверхбыстрые звезды все же будут найдены, они помогут понять эволюцию Вселенной. В частности, дать ученым еще один инструмент для измерения скорости расширения космоса. Кроме того, говорит Лоеб, при определенных условиях на орбите таких звезд могут быть и планеты, путешествующие через галактики. И если на таких планетах будет жизнь, они могли бы переносить ее с одной галактики в другую. Согласитесь, интересные рассуждения.

Все началось в 2005 году, когда была обнаружена звезда, которая стремилась прочь из нашей галактики так быстро, что могла покинуть гравитационное поле Млечного Пути. В течение следующих лет астрономы смогли обнаружить еще несколько звезд, которые стали известны как сверхскоростные звезды (hypervelocity stars). Эти звезды были вытолкнуты сверхмассивной черной дырой в центре Млечного Пути. Когда пара таких звезд, вращающихся друг вокруг друга, подходит близко к центральной черной дыре, которая весит в миллионы раз больше Солнца, три объекта вступают в короткий гравитационный танец, в результате которого одна звезда оказывается выброшена. Другая остается на орбите вокруг черной дыры.

Лоеб и Гильшон поняли, что если вместо этого у вас будет две сверхмассивные черные дыры на грани столкновения и звезда, которая вращается вокруг одной черной дыры, гравитационные взаимодействия могли бы катапультировать звезду в межгалактическое пространство со скоростью, в сотни раз превышающую скорость сверхскоростных звезд. Анализ был опубликован в журнале Physical Review Letters.

По мнению Лоеба, это наиболее вероятный сценарий, в ходе которого могут появиться самые быстрые звезды во Вселенной. В конце концов, сверхмассивные черные дыры сталкиваются чаще, чем вы думаете. Почти все галактики обладают сверхмассивными черными дырами в центрах, и почти все галактики стали результатом слияния двух меньших галактик. Когда объединяются галактики, объединяются и центральные черные дыры.

Лоеб и Гильшон рассчитали, что слияние сверхмассивных черных дыр должно было бы выбросить звезды с широким диапазоном скоростей. Немногие из них достигли бы околосветовой скорости, но остальные разогнались бы достаточно серьезно. К примеру, говорит Лоеб, в наблюдаемой Вселенной может быть больше триллиона звезд, которые движутся со скоростью 1/10 от световой, то есть порядка 107 000 000 километров в час.

Поскольку движение одиночной изолированной звезды через межгалактическое пространство будет достаточно тусклым, только мощные телескопы будущего вроде , запланированного к запуску в 2018 году, смогут их обнаружить. Да и то, скорее всего, такие телескопы смогут увидеть только звезды, которые достигли наших галактических окрестностей. Большинство выброшенных звезд, скорее всего, образовались рядом с центрами галактик и были выброшены вскоре после своего рождения. Это означает, что они путешествуют уже большую часть своего жизненного времени. В таком случае возраст звезды будет приблизительно равен времени, которое путешествует звезда. Объединив время пути с измеренной скоростью, астрономы смогут определить расстояние от домашней галактики звезды до наших галактических окрестностей.

Если астрономы смогут найти звезды, которые были выброшены из одной галактики в разное время, они смогут использовать их для измерения расстояния до этой галактики в разных моментах в прошлом. Глядя на то, как это расстояние менялось со временем, можно будет определить, насколько быстро расширяется Вселенная.

Две сливающиеся галактики

У сверхбыстрых блуждающих звезд может быть и другое применение. Когда сверхмассивные черные дыры сталкиваются одна с другой, они создают рябь в пространстве и времени, которые отображают интимные подробности слияния черных дыр. Космический телескоп eLISA, запланированный к запуску в 2028 году, будет выявлять гравитационные волны. Поскольку сверхбыстрые звезды образуются, когда черные дыры вот-вот сольются, они будут выступать своего рода сигналом, который укажет eLISA на возможные источники гравитационных волн.

Существование таких звезд будет одним из самых ярких сигналов того, что две сверхмассивные черные дыры находятся на пороге слияния, говорит астрофизик Энрико Рамирес-Руис из Калифорнийского университета в Санта-Крус. Хотя их может быть сложно обнаружить, они будут представлять принципиально новый инструмент для изучения Вселенной.

Через 4 миллиарда лет наша галактика столкнется с галактикой Андромеда. Две сверхмассивные черные дыры в их центрах сольются, и звезды тоже могут быть выброшены. Наше Солнце слишком далеко от центра галактик, чтобы быть выброшенным, но другая звезда, возможно, будет удерживать обитаемые планеты. И если люди к тому времени еще будут существовать, они потенциально смогут сесть на эту планету и отправиться в другую галактику. Хотя, конечно, эта перспектива далека, как ни одна другая.

Наша вселенная настолько огромна, что осознать всю ее сущность чрезвычайно сложно. Мы можем попытаться мысленно объять ее необъятные просторы, но каждый раз наше сознание барахтается лишь на поверхности. Сегодня мы решили привести некоторые интригующие факты, которые, вероятно, вызовут недоумение.

Когда мы смотрим в ночное небо, мы видим прошлое

Первый же представленный факт способен поразить воображение. Когда мы смотрим на звезды в ночном небе, мы видим свет звезд из прошлого, свечение, путешествующее в пространстве многие десятки и даже сотни световых лет, прежде чем достигнуть человеческого глаза. Иными словами, всякий раз, когда человек бросает взгляд на звездное небо, он видит то, как светила выглядели когда-то раньше. Так, наиболее яркая звезда Вега находится от Земли на расстоянии 25 световых лет. И тот свет, что мы видели сегодня ночью, эта звезда оставила 25 лет назад.

В созвездии Ориона есть примечательная звезда Бетельгейзе. Она находится на расстоянии 640 световых лет от нашей планеты. Поэтому, если мы взглянем на нее сегодня ночью, то увидим свет, оставленный во время Столетней войны между Англией и Францией. Однако другие звезды находятся еще дальше, следовательно, глядя на них, мы соприкасаемся с еще более глубоким прошлым.

Телескоп "Хаббл" позволяет оглянуться на миллиарды лет назад

Наука постоянно развивается, и теперь у человечества есть уникальная возможность рассматривать очень удаленные объекты во Вселенной. И все благодаря замечательной инженерной разработке НАСА телескопу "Хаббл" со сверхглубоким полем. Именно благодаря этому лабораториям НАСА удалось создать некоторые невероятные образы. Так, с помощью изображений с этого телескопа в период с 2003 по 2004 год был отображен крошечный участок неба, содержащий 10 000 объектов.

Невероятно, но большинство из отображенных объектов - это молодые галактики, выступающие как портал в прошлое. Глядя на полученное изображение, люди переносятся на 13 млрд. лет назад, что всего лишь на 400-800 млн. лет позже Большого взрыва. Именно он с научной точки зрения и заложил начало нашей Вселенной.

Отголоски Большого взрыва проникают в старый телевизор

Для того чтобы уловить космическое эхо, существующее во Вселенной, нам потребуется включить старый ламповый телевизор. В тот момент, пока мы еще не настроим каналы, мы увидим черно-белые помехи и характерный шум, щелчки или потрескивания. Знайте, что на 1% эта помеха состоит из космического фонового излучения, последствий послесвечения Большого взрыва.

Стрелец В2 - это гигантское облако алкоголя

Недалеко от центра Млечного Пути, на расстоянии 20 000 световых лет от Земли, существует молекулярное облако, состоящее из газа и пыли. Гигантское облако содержит 10 в 9 степени миллиардов литров винилового спирта. Обнаружив эти важные органические молекулы, ученые получили некоторые подсказки первых строительных блоков жизни, а также их производных веществ.

Существует планета-алмаз

Астрономы обнаружили самую большую планету-алмаз в нашей галактике. Названа эта массивная глыба кристаллического алмаза Люси, в честь одноименной песни Биттлз о небесах с бриллиантами. Планета Люси обнаружена на расстоянии 50 световых лет от Земли в созвездии Центавра. Диаметр гигантского алмаза составляет 25 000 миль, что намного больше Земли. Вес планеты оценивается в 10 млрд. триллионов карат.

Путь солнца вокруг Млечного пути

Земля, а также другие объекты солнечной системы вращаются вокруг Солнца, в то время как наше светило, в свою очередь, совершает оборот вокруг Млечного пути. Для того, чтобы замкнуть один оборот, Солнцу требуется 225 миллионов лет. Знаете ли вы, что последний раз наше светило было в своем нынешнем положении в галактике, когда на Земле начался распад супер континента Пангеи, и динозавры начали свое развитие.

Самая большая гора Солнечной системы

На Марсе существует гора под названием Олимп, являющаяся гигантским щитовым вулканом (аналогом вулканов, обнаруженных на Гавайских островах). Высота объекта - 26 километров, а его диаметр простерся на 600 километров. Для сравнения: Эверест, самая большая вершина Земли, в три раза меньше, чем его аналог с Марса.

Вращение Урана

Знаете ли вы, что Уран вращается относительно Солнца практически «лежа на боку», в отличие от большинства других планет, имеющих меньшее отклонение оси? Такое гигантское отклонение приводит к очень длинным сезонам, где каждый полюс получает примерно 42 года непрерывного солнечного света летом и аналогичное время вечной темноты зимой. Последний раз летнее солнцестояние наблюдалось на Уране в 1944 году, зимнее ожидается лишь в 2028 году.

Особенности Венеры

Венера - самая медленно вращающаяся планета в Солнечной системе. Она вращается так медленно, что полный оборот занимает больше времени, чем прохождение по орбите. Это значит, что день на Венере фактически длится дольше, чем ее год. Эта планета также является пристанищем для постоянных электронных штормов с высокими показателями СО2. Также Венера окутана облаками серной кислоты.

Самые быстрые объекты во Вселенной

Считается, что быстрее всего во Вселенной вращаются нейтронные звезды. Пульсар - это особый тип нейтронной звезды, излучающий импульс света, скорость которого и позволяет астрономам измерить скорость вращения. Самое быстрое вращение зафиксировано у пульсара, который совершает вращение более чем на 70 000 километров в секунду.

Сколько весит ложка нейтронной звезды?

Наряду с невероятно высокой скоростью вращения, нейтронные звезды обладают повышенной плотностью своих частиц. Так, по оценкам специалистов, если бы мы могли собрать одну столовую ложку вещества, сконцентрированного в центре нейтронной звезды, а затем ее взвесили, то полученная масса равнялась бы приблизительно одному миллиарду тонн.

Есть ли жизнь за пределами нашей планеты?

Ученые не оставляют попыток выявить разумную цивилизацию в любом другом, кроме Земли, месте во Вселенной. Для этих целей разработан специальный проект под названием «Поиск внеземного разума». Проект включает в себя исследование наиболее перспективных планет и спутников, таких как Ио (спутник Юпитера). Существуют предпосылки, что там могут быть обнаружены доказательства примитивной жизни.

Также ученые рассматривают теорию того, что жизнь на Земле могла произойти более чем один раз. Если это будет доказано, то перспективы касательно других объектов во Вселенной будут более чем интригующими.

В нашей галактике 400 миллиардов звезд

Несомненно, Солнце имеет большое значение для нас. Это источник жизни, источник тепла и света, источник энергии. Но это всего лишь одна из многих звезд, населяющих нашу галактику, центром которой является Млечный путь. По последним оценкам в нашей галактике насчитывается более 400 миллиардов светил.

Также ученые ищут разумную жизнь среди 500 миллионов планет, вращающихся вокруг других звезд, со схожими с Землей показателями удаленности от Солнца. За основу исследований берется не только удаленность от светила, но и показатели температурного режима, наличие воды, льда или газа, правильная комбинация химических соединений и другие формы, способные построить жизнь, такую же, как на Земле.

Заключение

Итак, во всей галактике существует 500 миллионов планет, где потенциально может существовать жизнь. Пока еще эта гипотеза не имеет конкретных доказательств и основана только на предположениях, однако и опровергнуть ее также нельзя.