Тональный генератор. Схемы простых генераторов низкой частоты Как сделать тональный кварцевый генератор

Одно из основных требований, предъявляемых к усилителям однополосного сигнала,- линейность их амплитудной характеристики. Усилитель с плохой линейностью обычно является источником помех другим радиолюбителям, а иногда и телезрителям. Для выявления нелинейных искажений в усилителях SSB сигнала применяют метод испытания двумя тонами .
Если подать на вход однополосного передатчика два низкочастотных сигнала разных по частоте, но одинаковых по амплитуде, то сигнал на выходе усилителя мощности будет изменяться по синусоидальному закону от нуля до максимального значения (рис.1 ).

Период изменения определяется разностью частот на входе передатчика. По форме огибающей выходного сигнала, по отклонениям её от синусоидального закона можно судить о линейности амплитудной характеристики устройства.
Форму и уровень сигнала контролируют осциллографом. Так как амплитуда выходного напряжения исследуемого усилителя составляет обычно десятки вольт, то сигнал можно подать непосредственно на отклоняющие пластины осциллографа (в том числе и низкочастотного). Источником двухтонального сигнала может быть генератор, схема которого изображена на рис.2 .


Рис.2


Он состоит из двух генераторов с обратной связью через двойные Т-мосты и эмиттерного повторителя. Генератор, собранный на транзисторе V1, вырабатывает частоту 1550 Гц. а на V2- 2150 Гц. Через развязывающие резисторы R1 и R5 сигналы генераторов поступают на эмиттерный повторитель (транзистор V3). При использовании элементов с номиналами, указанными на схеме, "суммарное" выходное напряжение (включены оба генератора устройства) составляет около 0,1 В. Выходное сопротивление - около 300 Ом.
Налаживание начинают с точной установки частоты генераторов. Для этого, подавая поочередно питание на каждый из них, подбирают элементы Т-мостов. При этом следует иметь в виду, что для сохранения хорошей синусоидальной формы выходного сигнала сопротивление резисторов R2 (R6) и R4 (R7) должно быть примерно в 10 раз больше сопротивления резистора R3 (R8), а ёмкость конденсаторов С1 (С6) и С4 (С8) - в два раза меньше ёмкости конденсатора СЗ (С7). После установки частот генераторов подстроенным резистором R5 выравнивают амплитуды сигналов. Так как резистор R5 в некоторой степени влияет и на уровень сигнала генератора на транзисторе V1, эту операцию проводят методом последовательных приближений.
Генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 55x65 мм (рис. 3 ).


Рис.3


В нем использованы конденсаторы КМ-5, резисторы ОМЛТ-0,125 (R5 - СПЗ-1А), транзисторы КТ315 с любым буквенным индексом. В приборе можно применить любые низкочастотные или высокочастотные транзисторы структуры n-р-n или р-n-р. Естественно, что в приборе на транзисторах структуры р-n-р полярность источника питания должна быть другой. Как видно из рис. 2, прибор имеет отдельные выводы для подключения питания генераторов. Это позволяет при необходимости подавать на передатчик однотональный испытательный сигнал частотой соответственно 1550 и 2150 Гц. В этом случае для коммутации цепей питания генератора устройства необходимо установить переключатель на два направления и четыре положения ("Выключено", "1550 Гц", "2150 Гц", "Двухтональный сигнал"). Можно использовать и переключатель на одно направление, "развязав" точки переключения генераторов двумя диодами (любого типа). Для установки уровня выходного сигнала на выходе прибора необходимо включить переменный резистор сопротивлением 5... 15 кОм.
При настройке передатчика с помощью генератора к усилителю мощности подключают эквивалент антенны сигнал с которого подают на осциллограф. Уровень сигнала с двухтонального генератора устанавливают таким же, как и максимальный уровень сигнала, развиваемый микрофоном, с которым используется передатчик. Включив передатчик, подбирают частоту развертки осциллографа так, чтобы получилось устойчивое изображение осциллограммы на экране. После этого регулируют передающий тракт, добиваясь минимальных искажений огибающей ВЧ сигнала.
Описаный двухтональный генератор хорошо подходит для настройки трансивера

Радио 1987, №5

Многоголосные ЭМИ с одним тональным генератором уже зарекомендовали себя как надёжные и практичные устройства. Однако зачастую их возможности реализуются далеко не полностью из-за особенностей используемых в них генераторов. Как правило, тональный генератор строят на основе высокостабильного кварцевого резонатора или RC-цепей. В этом случае электронное управление частотой либо исключено, либо крайне затруднено .

Описанное ниже устройство - тональный генератор, управляемый напряжением. Управляющий сигнал снимают с различных формирователей и органов управления ЭМИ. Это могут быть генераторы частотного вибрато, огибающей (для автоматического изменения строя), регуляторы глиссандо (скольжения строя) с ручным или ножным (педальным) управлением.

К особенностям генератора следует отнести высокую рабочую частоту. Использование цифровой микросхемы позволило реализовать сравнительно простой и дешёвый ГУН с рабочей частотой вплоть до 7,5...8 МГц (рис. 1). Для большинства цифровых генераторов тона с равномерно-темперированной музыкальной шкалой, состоящих обычно из 12 идентичных счётчиков с различными интервальными коэффициентами пересчёта, необходима тактовая (ведущая) частота в пределах 1...4 МГц. Поэтому характеристики генератора должны быть такими, чтобы обеспечить необходимую линейность в этих частотных пределах.

Принцип работы генератора основан на формировании регулируемых по длительности импульсов двумя замкнутыми в кольцо одинаковыми формирователями, управляемыми напряжением. Таким образом, спад импульса на выходе одного формирователя вызывает появление фронта следующего импульса на выходе другого и т. д. Работу устройства иллюстрируют временные диаграммы, показанные на рис. 2. До момента t 0 управляющее напряжение равно нулю. Это значит, что в точках А и Б установился сигнал с уровнем логического 0, поскольку вытекающий входной ток элементов DD1.1 и DD1.2 (он не превышает примерно 1,6 мА) замыкается на общий провод через резисторы R1 и R2 и малое выходное сопротивление источника управляющего напряжения. На выходе инверторов DD1.1 и DD1.2 в это время действует уровень 1, поэтому RS-триггер на элементах DD1.3 и DD1.4 установится произвольно в одно из устойчивых состояний. Предположим для определённости, что на прямом (верхнем по схеме) выходе установился сигнал 1, а на инверсном - 0.

При появлении в момент t 0 на управляющем входе некоторого положительного напряжения через резисторы R1 и R2 потечёт ток. При этом в точке А напряжение останется близким к нулю, так как ток через резистор R1 протекает на общий провод через малое сопротивление диода VD1 и выходной цепи элемента DD1.4. В точке Б напряжение будет повышаться, поскольку диод VD2 закрыт высоким уровнем с выхода элемента DD1.3. Ток через резистор R2 будет заряжать конденсатор С2 до 1,1... 1,4 В за время, зависящее от его ёмкости, сопротивления резистора R2 и значения управляющего напряжения. При увеличении U ynp увеличивается скорость зарядки конденсатора, и он заряжается до того же уровня за меньшее время.

Как только напряжение в точке Б достигнет порога переключения элемента DD1.2, на его выходе установится уровень 0, который переключит RS-триггер. Теперь на прямом выходе будет уровень 0, а на инверсном - 1. Это приведёт к быстрой разрядке конденсатора С2 и уменьшению напряжения, а конденсатор С1 начнёт заряжаться. В результате триггер снова переключится и весь цикл повторится.

Увеличение управляющего напряжения (период времени t 1 ...t 2 , рис. 2) приводит к увеличению зарядного тока конденсаторов и уменьшению периода колебаний. Так происходит управление частотой колебаний генератора. Вытекающий входной ток элементов ТТЛ складывается с током источника управляющего напряжения, что позволяет расширить пределы управляющего сигнала, так как при большом сопротивлении резисторов R1 и R2 генерация может сохраняться даже при U ynp =0. Однако этому току свойственна температурная нестабильность, что сказывается на стабильности частоты генерации. В какой-то мере повысить температурную стабильность генератора можно путём использования конденсаторов С1 и С2 с положительным ТКЕ, что будет компенсировать увеличение неуправляемого вытекающего входного тока элементов DD1.1 и DD1.2 при изменении температуры.

Период колебаний зависит не только от сопротивления резисторов R1 и R2 и ёмкости конденсаторов С1 и С2, но и от многих других факторов, поэтому точная оценка периода затруднена. Если пренебречь временными задержками сигналов в элементах DD1.1-DD1.4 и принять значение их напряжения логического 0, а также порогового напряжения диодов VD1 и VD2 равными нулю, то работу генератора можно описать выражением: T 0 =2t 0 =2RC*ln((I э R+U упр)/(I э R+U упр -U сп)), полученным на основе решения дифференциального уравнения:

dUc/dt = I э /C + (U упр -Uс)/(RC),

где R и С - номиналы времязадающих цепей; Uc - напряжение на конденсаторе С; Uсп - максимальное (пороговое) значение напряжения Uc; U ynp - управляющее напряжение; I э - среднее значение входного вытекающего тока элемента ТТЛ; t 0 - длительность импульса; Т 0 - период колебаний. Расчёты показывают, что первая из указанных формул весьма точно согласуется с экспериментальными данными при Uynp>=Uсп, при этом были выбраны средние значения: I э =1,4 мА; Uсп = 1,2 В. Кроме того, на основе анализа того же дифференциального уравнения можно прийти к выводу, что

(I э R+U упр)/(I э R+U упр -Uсп)>0,

т. е., если I э R/(I э R-Uсп)>0, то устройство работоспособно при Uynp≥0; этот вывод подтверждает и экспериментальная проверка устройства. Тем не менее наибольшая стабильность и точность работы ГУН могут быть достигнуты при Uупр ≥ Uсп = 1,2..1,4 В, т. е. в частотных пределах 0,7...4 МГц.

Практическая схема тонального генератора для полифонического ЭМИ или ЭМС показана на рис. 3. Пределы рабочей частоты (при U упр ≥ 0,55...8 В) - 0,3...4,8 МГц. Нелинейность характеристики управления (на частоте в пределах 0,3...4 МГц) не превышает 5 %.

На вход 1 подают сигнал с генератора огибающей для автоматического управления скольжением частоты звука. При незначительной глубине модуляции (5...30 % тона) достигается имитация оттенков звучания бас-гитары, а также других щипковых и ударных инструментов, у которых высота интонирования звуков в момент их извлечения немного отклоняется от нормы (обычно скачком повышается во время атаки звука и далее быстро уменьшается до своего нормального значения).

На вход 2 подают постоянное управляющее напряжение с ручного или педального регулятора глиссандо. Этот вход как раз и служит для подстройки или изменения (транспонирования) тональности в пределах двух октав, а также для скольжения по высоте аккордов или тональных звуков, имитирующих, например, тембр кларнета, тромбона или голоса.

На вход 3 подают от генератора вибрато сигнал синусоидальной, треугольной или пилообразной формы. Переменным резистором R4 регулируют уровень вибрато в пределах 0...+-0,5 тона, а также уровень девиации частоты до +-1 октавы и более при замыкании выключателя SA1. При большой частоте модуляции (5...11) Гц) и глубине +-0,5...1,5 октавы тональные звуки теряют свои музыкальные качества и приобретают характер шумового сигнала, напоминающего глухой рокот или шелест лопастей вентилятора. При малой частоте (0,1...1 Гц) и той же глубине достигается очень красочный и выразительный эффект, подобный «плавающему» звучанию гавайской гитары.

Сигнал с выхода тонального генератора надо подавать на вход цифрового формирователя сигналов равномерно-темперированного музыкального строя.

На операционном усилителе DA1 собран активный сумматор управляющих сигналов. Сигнал с выхода сумматора поступает на вход ГУН, который выполнен на логических элементах DD1.1-DD1.4. Кроме ГУН, устройство содержит образцовый кварцованный генератор, собранный на элементах DD2.1, DD2.2, а также цепь из двух октавных делителей частоты на триггерах микросхемы DD3. тактируемых этим генератором. Генератор и триггеры формируют три образцовых сигнала с частотой 500 кГц, 1 и 2 МГц. Эти три сигнала и сигнал с выхода ГУН поступают на вход электронных ключей, собранных на элементах DD4.1-DD4.4 с открытым коллектором.

Эти коммутаторы, управляемые переключателями SA2-SA5, имеют общую нагрузку - резистор R13. Выходные цепи элементов образуют устройство с логической функцией ИЛИ. Когда один из ключей пропускает на выход свой тактовый сигнал, остальные закрыты низким уровнем с переключателей. Высокий уровень для подачи на R-входы D-триггеров DD3.1 и DD3.2 и на контакты переключателей SA2-SA5 снимают с выхода элемента DD2.4.

Кварцованный генератор с делителями частоты играют вспомогательную роль и служат в основном для оперативной подстройки ГУН или «ведут» инструмент в режиме «Орган», при этом переключатели SA3, SA4, SA5 («4"», «8"», «16"») позволяют смещать строй ЭМИ соответственно от самого низкого регистра на одну и на две октавы вверх. При этом, разумеется, никакой подстройки или изменения высоты звуков быть не может.

К недостаткам генератора следует отнести сравнительно низкую температурную стабильность, которая в данном случае не имеет большого значения , и значительную нелинейность управляющей характеристики ГУН на краях диапазона, особенно в области нижних частот рабочего диапазона генератора.

На рис. 4 показана экспериментально снятая зависимость частоты генерации от управляющего напряжения: 1 - для генератора по схеме рис. 1, 2 - рис. 3.

Устройство собрано на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Микросхемы серии К155 можно заменить на аналогичные из серий K130 и К133; К553УД1А - на К553УД1В, К553УД2, К153УД1А, К153УД1В, К153УД2. Вместо Д9Б можно использовать диоды этой серии с любым буквенным индексом, а также Д2В, Д18, Д311, ГД511А. Конденсаторы С4 и С5 лучше выбрать с положительным ТКЕ, например. КТ-П210. КПМ-П120, КПМ-П33, КС- П33, КМ- П33, К10-17-П33, К21У-2-П210, К21У-3-П33. Конденсаторы С7, C10, C11 - К50-6.

Особое внимание следует уделить тщательной экранировке устройства. Выходные проводники нужно свить в шнур с шагом 10..30 мм.

Правильно смонтированный тональный генератор в налаживании не нуждается и начинает работать сразу после подключения питания. Управляющее напряжение на входе ГУН не должно превышать 8...8,2 В. На стабильность частоты генератора отрицательно влияют изменения питающего напряжения 5 В, поэтому питать его необходимо от источника с высоким коэффициентом стабилизации.

И. БАСКОВ, д. Полоска Калининской обл.

ЛИТЕРАТУРА

  1. В. Беспалов. Делитель частоты для многоголосного ЭМИ. - Радио, 1980, № 9.
  2. Л. А. Кузнецов. Основы теории, конструирования, производства и ремонта ЭМИ. - М.: Лёгкая и пищевая промышленность. 1981.

На рисунке 1 изображена схема простого генератора, предназначенная в основном для проверки низкочастотной аппаратуры и определения в ней неисправностей.

Генератор имеет одну фиксированную частоту 1000Гц, значение которой выставляют резистором R1. Уровень выходного сигнала определяется положением движка резистора R13. В схеме есть система поддержки выходного сигнала на определенном уровне, состоящая из элементов VT1, VD2, R10, R11, C6. Уровень срабатывания системы автоматического поддержания выходного напряжения устанавливается с помощью резистора R11. Коэффициент гармоник этого генератора относительно велик, что бы с помощью его можно было измерять нелинейные искажения НЧ аппаратуры. Поэтому на выходе данного генератора нужно установить фильтр нижних частот – ФНЧ. Такой фильтр . В комплекте с ФНЧ данный генератор имеет очень чистый тональный сигнал с уровнем коэффициента нелинейных искажений в тысячные доли процента. Питаться генератор должен от стабилизированного источника постоянного тока с напряжением 5… 12В. Схему и рисунок печатной платы можно скачать здесь.

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45...60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1...15 В (потребляемый ток 2...60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1...15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1...15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3...11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Тональный набор (Dual-tone multi-frequency signaling, DTMF) был разработан компанией Bell Labs в 50-х годах прошлого века для революционного на тот момент времени кнопочного телефона. Для представления и передачи цифровых данных в тоновом режиме используется пара частот (тонов) речевого частотного диапазона. В системе определены две группы из четырех частот, и информация кодируется одновременной передачей двух частот - по одной из каждой группы. Это дает в общей сложности шестнадцать комбинаций для представления шестнадцати разных чисел, символов и букв. В настоящее время DTMF-кодирование используется в широком спектре приложений в области связи и управления, что, например, подтверждается Рекомендацией Q.23 Международного союза электросвязи (МСЭ).

В данной статье описывается схема тонового DTMF-генератора, воспроизводящего все восемь частот и формирующего результирующий выходной двухтоновый сигнал. Рассматриваемая система была построена на базе микросхемы Silego GreenPAK ™ SLG46620V и операционных усилителей Silego SLG88104V. Выдаваемый результирующий сигнал представляет собой сумму двух частот, определяемых строкой и столбцом телефонной клавиатуры.

Предлагаемая схема использует четыре входа для выбора формируемой комбинации частот. Схема также имеет вход разрешения, который запускает генерацию и определяет продолжительность времени передачи сигнала. Частота выходного сигнала генератора соответствует требованиям стандарта МСЭ для DTMF.

Тоновые DTMF-сигналы

DTMF-стандарт определяет кодирование цифр 0-9, букв A, B, C и D и символов * и # в виде комбинации двух частот. Эти частоты разделены на две группы: группа высоких частот и группа низких частот. В таблице 1 показаны частоты, группы и соответствующие представления символов.

Таблица 1. Кодирование сигналов тоновом режиме DTMF

Группа верхних частот

Группа нижних частот

Частоты были выбраны таким образом, чтобы избежать кратных гармоник. Кроме того, их сумма или разность не дают другой DTMF-частоты. Таким образом, удается избежать гармоник или модуляционных искажений.

В стандарте Q.23 указывается, что погрешность каждой передаваемой частоты должна находиться в диапазоне ± 1,8% от номинального значения, а суммарные искажения (в результате гармоник или модуляции) должны быть на 20 дБ ниже основных частот.

Описанный выше результирующий сигнал может быть описан как:

s(t) = Acos(2πfhight)+ Acos(2πflowt),

где fhigh и flow являются соответствующими частотами из групп высоких и низких частот.

На рисунке 1 показан результирующий сигнал для цифры «1». На рисунке 2 показан частотный спектр, соответствующий данному сигналу.

Рис. 1. Тональный DTMF-сигнал

Рис. 2. Спектр тонального DTMF-сигнала

Длительность DTMF-сигналов может быть различной и зависит от конкретного приложения, в котором используется тональное кодирование. Для наиболее распространенных приложений, значения длительностей, как правило, лежат между ручным и автоматическим набором. В таблице 2 показано краткое описание типовой продолжительности времени для двух типов набора.

Таблица 2. Длительность сигналов при тоновом наборе

Тип набора

Группа верхних частот

Группа верхних частот

Ручной набор

Автоматический набор

Для получения большей гибкости DTMF-генератор, предлагаемый в данном руководстве, снабжен входом разрешения, который используется для старта генерации сигнала и определяет его длительность. При этом продолжительность сигнала равна длительности импульса на входе разрешения.

Аналоговая часть схемы DTMF-генератора

Рекомендация МСЭ Q.23 определяет DTMF-сигналы как аналоговые сигналы, созданные двумя синусоидальными волнами. В предлагаемой схеме DTMF-генератора микросхема Silego GreenPAK SLG46620V генерирует сигналы прямоугольной формы с желаемыми DTMF-частотами. Чтобы получить синусоидальные сигналы необходимой частоты и сформировать результирующий сигнал (сумма двух синусоидальных волн), потребуются аналоговые фильтры и сумматор. По этой причине в данном проекте было решено использовать фильтры и сумматор на базе операционных усилителей SLG88104V.

На рисунке 3 показана структура предлагаемой аналоговой части устройства.

Рис. 3. Схема аналоговой обработки для получения DTMF-сигнала

Для получения синусоидальных сигналов из прямоугольных импульсов используются аналоговые фильтры. После выполнения фильтрации происходит суммирование двух сигналов и формирование желаемого выходного двухтонового DTMF-сигнала.

На рисунке 4 представлен результат преобразования Фурье, используемого для получения спектра прямоугольного сигнала.

Рис. 4. Спектр сигнала прямоугольной формы

Как можно заметить, прямоугольный сигнал содержит только нечетные гармоники. Если представить такой сигнал с амплитудой A в виде ряда Фурье, то он будет иметь следующий вид:

Анализ этого выражения позволяет сделать вывод, что если аналоговые фильтры имеют достаточное затухание для гармоник, то вполне реально получить синусоидальные сигналы с частотой, равной частоте исходного прямоугольного сигнала.

Принимая во внимание допуск на уровень помех, определенный в стандарте Q.23, необходимо обеспечить, чтобы все гармоники были ослаблены на 20 дБ или более. Кроме того, любая частота из группы нижних частот должна сочетаться с любой частотой из группы верхних частот. Учитывая эти требования, были разработаны два фильтра, по одному для каждой группы.

В качестве обоих фильтров использовались низкочастотные фильтры Баттерворта. Затухание фильтра Баттерворта порядка n можно рассчитать как:

A(f)[дБ] = 10 log(A(f) 2) = 10log(1+(f/fc) 2n),

где fc - частота среза фильтра, n - порядок фильтра.

Разница в затухании между самой низкой частотой и самой высокой частотой каждой группы может быть не более 3 дБ, поэтому:

A(fHIGHER)[дБ] - A(fLOWER)[дБ] > 3 дБ.

Учитывая абсолютные значения:

A(fHIGHER) 2 / A(fLOWER) 2 > 2.

Кроме того, как мы уже говорили ранее, ослабление гармоник должно составлять 20 дБ или более. При этом наихудшим будет случай самой низкой частоты в группе, потому что ее 3-я гармоника является самой низкочастотной и находится ближе всего к частоте среза фильтра. Учитывая, что 3-я гармоника в 3 раза меньше фундаментальной, фильтр должен отвечать условию (абсолютные значения):

A(3fLOWER) 2 / A(fLOWER) 2 > 10/3.

Если эти уравнения применяются к обеим группам, то используемые фильтры должны быть фильтрами второго порядка. Это означает, что они будут иметь по два резистора и по два конденсатора, если их реализовывать с помощью операционных усилителей. При использовании фильтров третьего порядка чувствительность к допускам компонентов была бы ниже. Выбранные частоты отсечек фильтров составляют 977 Гц для группы нижних частот и 1695 Гц для группы верхних частот. При таких значениях отличия в уровнях сигналов в группах частот согласуются с приведенными выше требованиями, а чувствительность к изменениям частоты отсечки из-за допусков компонентов оказывается минимальной.

Принципиальные схемы фильтров, реализованные с помощью SLG88104V, представлены на рисунке 5. Номиналы первой пары R-C выбраны таким образом, чтобы ограничить выходной ток микросхемы SLG46620V. Второе звено фильтра определяет коэффициент усиления, который составляет 0,2. Амплитуда прямоугольных сигналов задает рабочую точку операционного усилителя на уровне 2,5 В. Нежелательные напряжения блокируются конденсаторами выходных фильтров.

Рис. 5. Принципиальные схемы выходных фильтров

На выходе сигналы фильтров суммируются, и результирующий сигнал представляет собой сумму гармоник, выбранных из группы нижних и верхних частот. Для компенсации затухания фильтра амплитуду выходного сигнала можно подстроить с помощью двух резисторов R9 и R10. На рисунке 6 показана схема сумматора. На рисунке 7 представлена вся аналоговая часть схемы.

Рис. 6. Принципиальная схема сумматора

Рис. 7. Аналоговая часть схемы

Цифровая часть схемы тонального DTMF-генератора

Цифровая часть схемы тонального DTMF-генератора включает целый набор генераторов прямоугольных импульсов - по одному для каждой частоты DTMF. Так как для создания этих генераторов требуется восемь счетчиков, то для их реализации была выбрана микросхема GreenPAK SLG46620V. На выходах цифровой схемы формируются два сигнала прямоугольной формы, по одному на каждую группу частот.

Прямоугольные сигналы формируются с помощью счетчиков и D-триггеров и имеют коэффициент заполнения 50%. По этой причине частота переключения счетчиков в два раза выше требуемой частоты DTMF, а DFF-триггер делит выходной сигнал на два.

Источником тактирования для счетчиков является встроенный RC-генератор 2 МГц, частота которого дополнительно делится на 4 или 12. Делитель выбирается с учетом разрядности и максимального значения каждого счетчика, необходимого для получения конкретной частоты.

Для генерации высоких частот требуется меньшее количество отсчетов, поэтому для их формирования используются 8-битные счетчики, тактируемые от внутреннего RC-генератора, сигнал которого поделен на 4. По той же причине более низкие частоты реализованы с помощью 14-битных счетчиков.

Микросхема SLG46620V имеет только три стандартных 14-битных счетчика, поэтому одна из нижних частот была реализована с помощью 8-разрядного счетчика CNT8. Чтобы число отсчетов укладывалось в диапазоне 0…255, для тактирования данного CNT8 пришлось использовать сигнал RC-генератора, поделенный на 12. Для этой схемы была выбрана частота с наибольшим числом отсчетов, то есть самая низкая частота. Это позволило минимизировать погрешность.

В таблице 3 показаны параметры каждого прямоугольного сигнала.

Таблица 3. Параметры генераторов прямоугольных импульсов

Тактирование

Ошибка частоты [%]

Группа нижних частот

Группа верхних частот

Как видно из таблицы, все частоты имеют погрешность менее 1,8%, поэтому они соответствуют стандарту DTMF. Эти расчетные характеристики, основанные на идеальном значении частоты RC-генератора, могут быть подстроены с учетом измерения выходной частоты RC-генератора.

Хотя в предлагаемой схеме все генераторы работают параллельно, но сигнал только одного генератора из каждой группы будет поступать на выход микросхемы. Выбор конкретных сигналов определяет пользователь. Для этого применяются четыре входа GPIO (два бита для каждой группы) с таблицей истинности, показанной в таблице 4.

Таблица 4. Таблица выбора частот из группы нижних частот

Группа нижних частот

Таблица 5. Таблица выбора частоты из группы верхних частот

Группа верхних частот

На рисунке 8 показана логическая схема генератора прямоугольных сигналов с частотой 852 Гц. Эта схема повторяется для каждой частоты с соответствующими настройками счетчика и конфигурацией LUT.

Рис. 8. Генератор импульсов прямоугольной формы

Счетчик формирует выходную частоту, определяемую его настройками. Эта частота равна удвоенной частоте соответствующего тона DTMF. Параметры конфигурации счетчика показаны на рисунке 9.

Рис. 9. Пример настройки счетчика генератора прямоугольных импульсов

Выходной сигнал счетчика подключается к тактовому входу триггера D-Flip Flop. Так как выход DFF сконфигурирован как инвертированный, то если подключить выход DFF к его входу, то D-триггер преобразуется в T-триггер. Параметры конфигурации DFF можно увидеть на рисунке 10.

Рис. 10. Пример настройки триггера генератора прямоугольных импульсов

Сигнал с выхода DFF поступает на вход таблицы истинности LUT. Таблицы истинности LUT используются для выбора одного сигнала для каждого конкретного сочетания R1-R0. Пример конфигурации LUT представлен на рисунке 11. В данном примере, если на R1 поступает «1», а на R0 подается «0», входной сигнал передается на выход. В остальных случаях на выходе присутствует «0».

Рис. 11. Пример настройки таблицы истинности генератора прямоугольных импульсов

Как было сказано выше, предлагаемая схема имеет вход разрешения Enable. Если на входе разрешения Enable присутствует логическая единица «1», то генерируемые прямоугольные сигналы подаются на пару выходов микросхемы. Длительность передачи равна длительности импульса на входе разрешения. Чтобы реализовать эту функцию, потребовалось еще несколько блоков таблиц истинности LUT.

Для группы верхних частот используется один 4-разрядный LUT и один 2-битный LUT, как показано на рисунке 12.

Рис. 12. Схема выхода группы верхних частот

4-битный LUT1 настроен как логический элемент ИЛИ, поэтому он выдает логическую единицу «1», если на любом из его входов присутствует «1». Таблицы истинности C1/ C0 допускают выбор только одного из генераторов, поэтому 4-разрядный LUT1 определяет какой сигнал поступает на выход. Выход этого LUT подключается к 2-битному LUT4, который передает сигнал только в том случае, если на входе разрешения присутствует логическая «1». На рисунках 13 и 14 показаны конфигурации 4-битного LUT1 и 2-битного LUT4.

Рис. 13. Конфигурация 4-битного LUT1

Рис. 14. 2-битная конфигурация LUT4

Так как 4-битных таблиц истинности LUT больше не было, для группы нижних частот использовались два 3-битных LUT.

Рис. 15. Схема выхода группы нижних частот

Полная внутренняя схема GreenPAK SLG46620V показана на рисунке 16. На рисунке 17 представлена итоговая принципиальная схема DTMF-генератора.

Рис. 16. Блок-схема генератора тональных сигналов DTMF

Рис. 17. Принципиальная схема DTMF-генератора тональных сигналов

Тестирование схемы DTMF-генератора

На первом этапе тестирования предложенного DTMF-генератора было решено проверить частоты всех формируемых прямоугольных сигналов с помощью осциллографа. В качестве примера на рисунке 18 и 19 показаны выходные сигналы прямоугольной формы для частот 852 Гц и 1477 Гц.

Рис. 18. Прямоугольный сигнал 852 Гц

Рис. 19. Прямоугольный сигнал 1477 Гц

Как только частоты всех прямоугольных сигналов были проверены, началось испытание аналоговой части схемы. Были исследованы выходные сигналы для всех комбинаций из группы нижних и верхних частот. В качестве примера на рисунке 20 показана сумма сигналов 770 Гц и 1209 Гц, а на рисунке 21 показана сумма сигналов 941 Гц и 1633 Гц.

Рис. 20. Тональный DTMF-сигнал 770 Гц и 1209 Гц

Рис. 21. Тональный DTMF-сигнал 941 Гц и 1633 Гц

Заключение

В данной статье была предложена схема тонового DTMF-генератора, построенного на базе микросхемы Silego GreenPAK SLG46620V и операционных усилителей Silego SLG88104V. Генератор дает пользователю возможность выбирать комбинации требуемых частот с помощью четырех входов и управлять входом разрешения, который определяет длительность генерации выходных сигналов.

Характеристики микросхемы SLG46620V:

  • Тип: программируемая микросхема смешанных сигналов;
  • Аналоговые блоки: 8-битный АЦП, два ЦАП, шесть компараторов, два фильтра, ИОН, четыре интегрированных генератора;
  • Цифровые блоки: до 18 портов ввода/вывода, матрица соединений и комбинаторная логика, программируемые схемы задержки, программируемый функциональный генератор, шесть 8-битных счетчиков, три 14-битных счетчика, три ШИМ-генератора/компаратора;
  • Коммуникационный интерфейс: SPI;
  • Диапазон напряжений питания: 1,8…5 В;
  • Диапазон рабочих температур: -40…85 °C;
  • Корпусное исполнение: 2 x 3 x 0,55 мм 20-выводной STQFN.