Аэродинамика осевых вентиляторов. Аэродинамические схемы осевых вентиляторов

Вентиляторы – устройства, предназначенные для создания воздушного (в общем случае, газового) потока. Основная задача, которую решают с применением этих устройств в оборудовании для вентиляции, кондиционирования и воздухоподготовки – создание в системе воздуховодов условий для перемещения воздушных масс от точек забора до точек выброса или потребителей.

Для эффективной работы оборудования воздушный поток, создаваемый вентилятором должен преодолеть сопротивление системы воздуховодов, обусловленное поворотами магистралей, изменением их сечения, появлением турбулентностей и прочими факторами.

В результате имеет место перепад давления, который является одним из важнейших характеристических показателей, влияющих на выбор вентилятора (кроме него основную роль играют производительность, мощность, уровень шума и т.д.). Зависят эти характеристики, прежде всего, от конструкции устройств и используемых принципов работы.

Все множество конструкций вентиляторов разделяют на несколько основных типов:

  • Радиальные (центробежные);
  • Осевые (аксиальные);
  • Диаметральные (тангенциальные);
  • Диагональные;
  • Компактные (кулеры)


Центробежные (радиальные) вентиляторы

В устройствах этого типа происходит всасывание воздуха по оси рабочего колеса и выброс его под действием центробежных сил, развиваемых в зоне его лопастей, в радиальном направлении. Использование центробежных сил позволят использовать такие устройства в случаях, когда требуется высокое давление.

Характеристики радиальных вентиляторов в значительной мере зависят от конструкции рабочего колеса и формы лопастей (лопаток).

По этому признаку крыльчатки радиальных вентиляторов разделяют на устройства с лопатками:

  • загнутыми назад;
  • прямыми, в том числе, отклоненными;
  • загнутыми вперед.
На рисунке упрощенно показаны типы крыльчаток (рабочее направление вращения колес обозначено стрелками).

Рабочие колеса с загнутыми назад лопастями

Для такой крыльчатки (B на рисунке) характерна значительная зависимость производительности от давления. Соответственно, радиальные вентиляторы такого типа оказываются эффективны при работе на восходящей (левой) ветви характеристики. При их использовании в таком режиме достигается уровень эффективности до 80%. При этом геометрия лопаток позволяет добиться низкого уровня рабочего шума.

Основной недостаток таких устройств – налипание находящихся в воздухе частиц на поверхности лопастей. Поэтому такие вентиляторы не рекомендуется применять для загрязненных сред.

Рабочие колеса с прямыми лопатками

В таких крыльчатках (форма R на рисунке) устранена опасность загрязнения поверхности содержащимися в воздухе примесями. Такие устройства демонстрируют эффективность до 55% . При использовании прямых отклоненных назад лопастей характеристики приближаются к показателям устройств с загнутыми назад лопатками (достигается эффективность до 70%).

Крыльчатки с загнутыми вперед лопастями

Для вентиляторов, использующих такую конструкцию (F на рисунке) влияние изменения давления на воздушный поток незначительно.

В отличие от крыльчаток с загнутыми назад лопастями наибольшая эффективность таких рабочих колес достигается при работе на правой (нисходящей) ветви характеристики, при этом ее уровень составляет до 60%. Соответственно, при прочих равных, вентилятор с крыльчаткой типа F выигрывает у устройств, снабженных крыльчаткой, по размерам рабочего колеса и общим габаритным показателям.


Осевые (аксиальные) вентиляторы

Для таких устройств и входной и выходной воздушный потоки направлены параллельно оси вращения крыльчатки вентилятора.

Главным недостатком таких устройств является низкая эффективность при использовании варианта установки со свободным вращением.

Значительное повышение эффективности достигается при заключении вентилятора в цилиндрический корпус. Существуют и другие методы улучшения характеристик, например, размещение непосредственно за рабочим колесом направляющих лопастей. Такие меры позволяют добиться эффективности аксиальных вентиляторов в 75% без использования направляющих лопастей и даже 85% при их установке.


Диагональные вентиляторы

При осевом воздушном потоке невозможно создать значительный уровень эквивалентного давления. Добиться увеличения статического давления позволяет использование для создания воздушного потока дополнительных сил, например, центробежных, которые действуют в радиальных вентиляторах.

Диагональные вентиляторы являются своеобразным гибридом аксиальных и радиальных устройств. В них всасывание воздуха осуществляется в направлении, совпадающем с осью вращения. За счет конструкции и расположения лопастей рабочего колеса достигается отклонение воздушного потока на 45 градусов.

Таким образом, в движении воздушных масс появляется радиальная составляющая скорости. Это позволяет добиться увеличения давления за счет действия центробежных сил. Эффективность диагональных устройств может составлять до 80%.


Диаметральные вентиляторы

В устройствах этого типа поток воздуха всегда направлен по касательной к рабочему колесу.

Это позволяет добиться значительной производительности даже при малых диаметрах крыльчатки. Благодаря таким особенностям диаметральные устройства получили распространение в компактных установках, таких как воздушные завесы.

Эффективность вентиляторов, использующих этот принцип действия, достигает уровня в 65%.


Аэродинамическая характеристика вентилятора

Аэродинамическая характеристика отражает зависимость расхода (производительности) вентилятора от давления.

На ней находится рабочая точка, показывающая актуальный расход при определенном уровне давления в систем.


Характеристика сети

Сеть воздуховодов при различных значениях расхода оказывает различное сопротивление движению воздуха. Именно это сопротивление определяет давление в системе. Отображается эта зависимость характеристикой сети.

При построении аэродинамической характеристики вентилятора и характеристики сети в единой систем координат рабочая точка вентилятора находится на их пересечении.


Расчет характеристики сети

Для построения характеристик сети используется зависимость

В этой формуле:

  • dP – давление вентилятора, Па;
  • q – расход воздуха, куб.м/ч или л/мин;
  • k – постоянный коэффициент.
Характеристика сети строится следующим образом.
  1. На аэродинамическую характеристику наносится первая точка, соответствующая рабочей точке вентилятора. К примеру, работает при давлении 250 Па, создавая воздушный поток 5000 куб.м/ч. (точка 1 на рисунке).
  2. По формуле определяется коэффициент kk = dP/q2Для рассматриваемого примера его величина составит 0.00001.
  3. Произвольно выбираются несколько отклонений давления, для которых пересчитывается расход.К примеру, при отклонения давления -100 Па (результирующая величина 150 Па) и +100 Па (значение 350 Па), рассчитанный по формуле расход воздуха составит 3162 и 516 куб.м/ч соответственно.
Полученные точки наносятся на график (2 и 3 на рисунке) и соединяются плавной кривой.

Каждому значению сопротивления сети воздуховодов соответствует собственная характеристика сети. Строятся они аналогичным образом.

В результате, при сохранении скорости вращения вентилятора, рабочая точка смещается по аэродинамической характеристике. При увеличении сопротивления рабочая точка из положения 1 смещается в положение 2, что вызывает снижение расхода воздуха. Наоборот, при уменьшении сопротивления (переход в точку 3 а линии С) расход воздуха увеличится.

Таким образом, отклонение реального сопротивления системы воздуховодов от расчетного приводит к несоответствию величины воздушного потока проектным значениям, что может отрицательно сказаться на эксплуатационных показателях системы в целом. Главная опасность такого отклонения заключается в невозможности для вентиляционных систем эффективно выполнять возложенные на них задачи.

Компенсировать отклонение расхода воздуха от расчетного можно за счет изменения скорости вращения вентилятора. При этом получается новая рабочая точка, лежащая на пересечении характеристики сети и той аэродинамической характеристики из семейства, которая соответствует новой скорости вращения.

Соответственно, при повышении или уменьшении сопротивления потребуется отрегулировать скорость вращения таким образом, чтобы рабочая точка переместилась в положение 4 или 5 соответственно.

В этом случае наблюдается отклонение давления от расчетной характеристики сети (величина изменений отображена на рисунке).

На практике появления таких отклонений говорит о том, что режим работы вентилятора отличается от того, который был рассчитан из соображений максимальной эффективности. Т.е. регулирование скорости как в сторону увеличения, так и в сторону снижения ведет к потере эффективности работы вентилятора и системы в целом.


Зависимость эффективности вентиляторов от характеристик сети

Для упрощения выбора вентилятора на его аэродинамических характеристиках строят несколько характеристик сети. Чаще всего используются 10 линий, номера которых удовлетворяют условию

L = (dPd / dP)1/2

  • L – номер характеристики сети;
  • dPd – динамическое давление, Па;
  • dP – величина общего давления.
На практике это означает, что в рабочей точке на каждой из построенных линий воздушный поток вентилятора составляет соответствующую величину от максимальной. Для линии 5 – это 50%, для линии 10 – 100% (вентилятор свободно дует).

При этом эффективность вентилятора, которая определяется соотношением

  • dP – общее давление, Па;
  • q – расход воздуха, куб.м/ч;
  • P – мощность, Вт
может оставаться неизменной.

В этом отношении интерес представляет сравнение эффективности радиальных вентиляторов с загнутыми назад и вперед лопастями рабочего колеса. Для первых максимальное значение этого показателя нередко оказывается выше, чем для вторых. Однако, такое соотношение сохраняется только при работе в области характеристик сети, соответствующим меньшему расходу при заданном значении давления.

Как видно из рисунка, при высоких уровнях расхода воздуха для получения равной эффективности вентиляторам с загнутыми назад лопатками потребуются больший диаметр рабочего колеса.


Аэродинамические потери в сети и правила монтажа вентиляторов

Технические характеристики вентиляторов соответствуют указанным производителем в технической документации в том случае, если выполняются требования по их установке.

Основным из них является монтаж вентилятора на прямом участке воздуховода, причем его длина должна составлять не менее одного и трех диаметров вентилятора со стороны всасывания и нагнетания соответственно.

Нарушение этого правила ведет к увеличению динамических потерь, и, как следствие, к росту перепада давления. При увеличении такого перепада расход воздуха может значительно уменьшится, по сравнению с расчетными значениями.

На уровень динамических потерь, производительность и эффективность влияет множество факторов. Соответственно, при установке вентиляторов необходимо выполнять и другие требования.

Со стороны всасывания:

  • вентилятор устанавливают на расстоянии не менее 0.75 диаметра до ближайшей стены;
  • сечение входного воздуховода не должно отличаться от диаметра входного отверстия более чем на +12 и -8%;
  • длина воздуховода со стороны забора воздуха должна быть больше 1.0 диаметра вентилятора;
  • наличие препятствий для прохождения воздушного потока (демпферов, ответвлений и др.) недопустимо.
Со стороны нагнетания:
  • изменение поперечного сечения воздуховода не должно превышать 15% и 7% в сторону уменьшения и увеличения соответственно;
  • длина прямолинейного участка трубопровода на выходе должна составлять не менее 3-х диаметров вентилятора;
  • для уменьшения сопротивления не рекомендуется использовать отводы под углом 90 градусов (при необходимости поворота магистрали их следует получить из двух отводов по 45 градусов).


Требования к удельной мощности вентиляторов

Высокие показатели энергоэффективности – одно из главных требований, которое применяется в европейских странах ко всему оборудованию, в том числе, и к системам вентиляции зданий. В соответствии с этим Шведским институтом внутреннего климата (Svenska Inneklimatinsitutet) была разработана концепция интегральной оценки эффективности для вентиляционного оборудования, основанная на так называемой удельной мощности вентиляторов.

Под этим показателем понимается отношение общей энергоэффективности всех входящих в систему вентиляторов к суммарному воздушному потоку в вентиляционных каналах здания. Чем ниже полученное в результате значение, тем эффективность оборудования выше.

Такая оценка легла в основу рекомендаций по покупке и установке вентиляционных систем для различных секторов и отраслей. Так для коммунальных зданий рекомендованное значение не должно превышать 1.5 при установке новых систем и 2.0 для оборудования после ремонта.

Введение.
Основные условные обозначения.
Глава 1. Общие сведения.
1.1. Характеристики сети и вентилятора.
1.2. Критерии подобия. Быстроходность и габаритность.
1.3. Типы вентиляторов, их особенности и области работы.
Глава 2. Основные уравнения. Характеристики плоских решеток профилей.
2.1. Параметры решеток профилей и потока.
2.2. Уравнения Бернулли и Эйлера. Теорема Жуковского.
2.3. Теоретические характеристики плоских решеток.
2.4. Экспериментальные характеристики решеток.
Глава 3. Поток в идеальном вентиляторе и структура реального течения. Влияние конструктивного исполнения.
3.1. Теоретические основы.
3.1.1. Уравнения, описывающие течение в межвенцовых зазорах.
3.1.2. Распределение параметров потока по длине лопаток. Параметры закрутки потока и реактивность.
3.1.3. Давление и КПД идеального вентилятора. Потери, связанные с остаточной закруткой потока.
3.1.4. Уравнение связи при нецилиндрических поверхностях тока.
3.2. Структура реального течения.
3.2.1. Экспериментальное исследование течения в межвенцовых зазорах.
3.2.2. Характеристики кольцевых решеток.
3.3. Влияние конструктивных особенностей элементов проточной части на течение и аэродинамическую характеристику.
3.3.1. Влияние коллектора, кока и формы подводящего переходника.
3.3.2. Крученые и некрученые лопатки.
3.3.3. Радиальные зазоры между лопатками колеса и границами проточной части. Форма концов лопаток.
3.3.4. Радиальные зазоры у лопаток регулирующего аппарата с корпусом и втулкой.
3.3.5. Осевой зазор между лопаточными венцами.
3.3.6. Способ крепления лопаток на втулке и герметичность ее диафрагмы.
3.4. Вращающийся срыв и помпаж. Расширение диапазона устойчивой работы.
3.4.1. Общие сведения.
3.4.2. Устройства для расширения диапазона устойчивых режимов работы.
Глава 4. Некоторые аэроакустические особенности осевых вентиляторов.
4.1. Методика акустических измерений и их обработки.
4.2. Влияние осевого зазора между лопаточными венцами на акустические свойства вентилятора.
4.3. Влияние формы профилей лопаток и типа аэродинамической схемы вентилятора.
4.4. Влияние наклона лопаток аппарата. Сочетание" чисел лопаток колеса и аппарата.
Глава 5. Влияние числа Рейнольдса на аэродинамическую характеристику вентиляторов.
5.1. Основные положения и условия определения влияния числа Re.
5.2. Влияние числа Re на характеристики вентиляторов различных аэродинамических схем.
5.3. Влияние формы профиля.
Глава 6. Методы выбора вентилятора и покрытия поля режимов. Совместная работа вентиляторов.
6.1. Расчет размерной характеристики по безразмерной. Пересчет характеристик при изменении частоты вращения, диаметра и плотности газа.
6.2. Методы выбора.
6.2.1. Выбор по величине быстроходности.
6.2.2. Выбор по величине габаритности или эквивалентного отверстия.
6.2.3. Другие методы выбора.
6.3. Зона экономичной работы. Покрытие поля вентиляционных режимов.
6.3.1. Зона при регулировании поворотом лопаток и частотой вращения.
6.3.2. Выбор оптимального ряда типоразмеров регулируемых вентиляторов.
6.3.3. Построение ряда вентиляторов с дискретными характеристиками.
6.4. Некоторые вопросы совместной работы вентиляторов.
6.4.1. Параллельная установка вентиляторов.
6.4.2. Последовательная установка вентиляторов.
Список литературы.

3.9. Аэродинамические характеристики вентиляторов

3.9.1. Общие сведения об аэродинамических характеристиках

Аэродинамической характеристикой вентилятора называется графическая зависимость междуосновными параметрами, определяющими

работу вентилятора, – полного давления, мощности и КПД от производительности при постоянном значении частоты вращения рабочего колеса.

Расчетные методы определения параметров работы вентилятора

не позволяют получить достаточно точные аэродинамические характе

ристики, поэтому построение их выполняется на основе данных аэро

динамических испытаний, проведенных в лабораторных условиях. Результаты исследований вентилятора при определенном числе оборотов рабочего колеса могут быть пересчитаны на другие режимы работы, а

также использоваться для построения характеристик вентиляторов, гео

метрически подобных испытанной конструкции.

Различают два вида аэродинамических характеристик: размерные

и безразмерные.

Размерные аэродинамические характеристики вентилятора

(рис. 3.42) представляют зависимости полного P V статического P SV и

(или) динамического P dV давлений, развиваемых вентилятором, потреб-

ляемой мощности N полного и статического S КПД от производительности Q при определенной плотности газа перед входом в вентилятор и постоянной частоте вращения его рабочего колеса.

При построении характеристики мощности вентилятора N Q поте

ри мощности в подшипниках и передаче не учитываются, так как способ соединения рабочего колеса с двигателем определяется в каждом кон-

кретном случае

Для вентиляторов общего назначения аэродинамические характеристики соответствуют работе на воздухе при нормальных условиях (плотность 1,2 кг/м3 , барометрическое давление 101,34 кПа, температу-

ра плюс 20 °С и относительная влажность 50%). Если вентиляторы пред-

назначены для перемещения воздуха и газа, которые имеют плотность,

отличающуюся от 1,2 кг/м3 , то на графиках приводятся дополнительные шкалы для величин P V P SV N , соответствующие действительной плотности перемещаемой среды.

Безразмерные аэродинамические характеристики представляют

собой графики зависимости коэффициентов полного и статичес

114 Генеральный спонсор –

Учебная библиотека АВОК Северо-Запад

Рис. 3.42. Аэродинамическая характеристика вентилятора

кого S давлений, мощности полного и статического S КПД от коэффициента производительности (рис. 3.43). При этом на гра-

фиках должны указываться значения быстроходности вентилятора диаметр D рабочего колеса и частота вращения при которых полу

чена характеристика

Безразмерные характеристики используются для расчета размерных параметров и для сравнения вентиляторов разных типов. Пример

такого сравнения приведен на рис. 3.44.

Безразмерные параметры вентиляторов входят в область, ограни-

ченную коэффициентом производительности = 0 3 и коэффициентом

полного давления = 0 8. Анализ приведенных характеристик позволя-

ет сделать ряд практических выводов

осевыевентиляторыявляютсясамымислабонапорными,ноимеютнаибольшие полные КПД среди рассматриваемых типов вентиляторов;

Учебная библиотека АВОК Северо-Запад

Рис. 3.43. Безразмерная аэродинамическая характеристика вентилятора

Рис. 3.44. Безразмерные аэродинамические характеристики вентиляторов

различных типов

I – осевые; II – радиальные; III – диаметральные

Учебная библиотека АВОК Северо-Запад

Рис. 3.45. Аэродинамическая характеристика вентилятора в логарифмическом масштабе

при различных частотах вращения

радиальные вентиляторы занимают промежуточную область по дав-

лению и КПД;

диаметральные вентиляторы имеют самые большие коэффициенты

давления, достигающие значений 6 8, так как потоку сообщается

энергия дважды, при входе в колесо и при выходе из него, однако

имеют самые малые значения полного КПД.

У вентиляторов общего назначения, предназначенных для работы

с присоединяемой к ним сетью, за рабочий участок характеристи-

ки должна приниматься та ее часть, на которой значение полного КПД

0,9 (здесь – максимальное значение полного КПД). Режим

работы вентилятора, соответствующий максимальному КПД, является оптимальным. Рабочий участок характеристики должен также удовлетворять условию обеспечения устойчивой работы вентилятора.

Учебная библиотека АВОК Северо-Запад

При подборе вентиляторов обычно используются аэродинамичес-

кие характеристики серийно изготавливаемых вентиляторов, построен-

ные для рабочего участка одного определенного типоразмера и охватывающие различные режимы работы, т.е. соответствующие различной

частоте вращения (рис. 3.45). На график зависимости P V Q наносятся

линии постоянных КПД мощности N указаны окружная скорость и

частота вращения. При построении таких характеристик обычно изоб-

ражается часть кривой P V Q в интервале = (0,7 0,8) . Для удобс-

тва подбора вентиляторов характеристики построены в логарифмическом масштабе. Особенностями таких характеристик является отсутствие нулевых значений P V и Q и то, что параболические кривые представлены

прямыми линиями. В приложении 1 приведены такие аэродинамические

характеристики радиальных вентиляторов типа ВР-86-77.

Частота вращения для кривых P V Q принимается кратной 50, 100

или 200 об/мин (в зависимости от размеров вентилятора). Дополнительно к ним приводятся кривые, соответствующие числу оборотов стан-

дартных асинхронных электродвигателей, используемых в конструкции

вентилятора. Этими кривыми пользуются в тех случаях, когда рабочее

колесо непосредственно соединено с валом электродвигателя

Пересчет аэродинамических характеристик вентиляторов на

другие частоты вращения, диаметры рабочих колес D и плотности пе

ремещаемого газа проводится по зависимостям

При подборе вентилятора необходимо руководствоваться следующим: зона рабочих режимов вентилятора должна находиться в зоне максимальной эффективности вентилятора и быть за пределами срывного режима вентилятора.

В соответствии с ГОСТ10616-90 рабочая зона аэродинамической характеристики вентилятора должна быть ограничена диапазоном производительностей, в котором полный КПД вентилятора составляет 0,9 от максимального КПД. Именно в таком виде приведены аэродинамические характеристики вентиляторов в каталогах большинства производителей вентиляторов. Однако, в этом случае теряются режимы максимальной производительности, при которых возможна работа вентилятора, хотя и с меньшей эффективностью.

В каталогах некоторых западных, а в последнее время в каталогах отечественных, производителей приводится кривая полного давления от режима Q=0, до режима максимальной производительности Qмах. Если не приведены ни кривая мощности ни полного (статического) КПД, то выбрать рабочую зону крайне затруднительно. В этом случае, для оценки, можно принимать, что режим максимального полного КПД имеет место примерно на 2/3 максимальной производительности вентилятора Qмах. Коэффициент запаса кс можно принимать кс =1,25...1,5 (большие значения, если срыв оказывает большее силовое воздействие на конструкцию вентилятора).

При подборе вентиляторов (радиальных, осевых) по аэродинамическим характеристикам, приведенным в каталогах, необходимо обращать внимание на следующее:

а) является ли указанная в характеристиках мощность, потребляемой вентилятором, или же это мощность, потребляемая электродвигателем вентилятора из сети;

б) имеет ли электродвигатель, комплектующий вентилятор, запас мощности на пусковые токи, низкие температуры перемещаемой среды.

Эти параметры определяют эффективность вентилятора, его аэродинамические характеристики и работоспособность электродвигателя при низких температурах перемещаемого воздуха. Например, если электродвигатель не имеет запаса мощности (канальные вентиляторы с внешним ротором), прямой пересчет давления на пониженную температуру может не дать правильных результатов, так как из-за увеличения потребляемой мощности электродвигатель может «сбросить» обороты.

При анализе аэродинамических характеристик осевых вентиляторов необходимо иметь в виду следующее обстоятельство. В отечественной практике в ряде случаев, например, когда электродвигатель расположен перед колесом, а втулка колеса выходит за пределы корпуса, динамическое давление подсчитывается по скорости выхода потока, определенной по ометаемой лопатками площади (полная площадь, определенная по диаметру колеса, за исключением площади, занимаемой втулкой колеса). В западных каталогах динамическое давление осевых вентиляторов определяется по полной площади, то есть по площади, ометаемой колесом.

Разница в статических давлениях, определенных по этим двум методам, начинает заметно сказываться при относительном диаметре втулки более n≥0,4 (отношение диаметра втулки к диаметру вентилятора). Если не учитывать этого обстоятельства, то подобранный вентилятор может не дать ожидаемого расхода в данной сети.

Особый интерес представляют аэродинамические характеристики, приведенные в технических условиях на радиальные вентиляторы в спиральном корпусе и, соответственно, в каталогах большинства их производителей. Оказалось, что у проектантов не всегда существует понимание в их трактовке. Рассмотрим это на примере характеристики вентиляторов типа ВР 80-75-2,5. Масштаб графиков - логарифмический, кривые полного давления вентиляторы обозначены линиями. Здесь же приведена серия ниспадающих кривых, пересекающих кривые Pv(Q). Эти кривые, зачастую ошибочно, называют кривыми мощности (иногда их называют кривыми равной мощности). На каждой такой кривой приведена установочная мощность электродвигателя с запасом на пусковые токи и отрицательную температуру. На самом деле, это кривые полного давления Pv"(Q), которое имел бы этот вентилятор, если бы он работал с переменной частотой вращения, но при постоянной мощности: в левой части от точки пересечения с реальной кривой Pv(Q)- с повышенной частотой относительно номинала, а правее точки пересечения - с пониженной частотой. Из всего вышесказанного следует понимать только одно: в левой части, до пересечения мнимой кривой с реальной, электродвигатель работает с запасом по мощности, а в правой части перегружен и при длительной работе может выйти из строя.

Рис 7.24. Установка осевого вентилятора ЦАГИ типа У.

Рис. 7.23. Крышный осевой вентилятор.

1-предохранительная решетка; 2- коллектор; 3- корпус; 4- электродвигатель; 5- рабочее колесо; 6- диффузор; 7- клапан; 8- зонт.

В настоящее время начат выпуск этого вентилятора в крышей модификации (рис 7.23). Колесо вентилятора при этом вращается в горизонтальной плоскости, будучи установлено на валу вертикально расположенного электродвигателя, укрепленного на трех растяжках в обечайке (корпусе).

Вся установка размещается в коротком трубопроводе, снабжен ном предохранительной решеткой со стороны входа воздуха и зонтом на выходе.

Агрегаты выпускаются свенти-пяторами № 4, 5, 6, 8, 10 и 12. По данным каталога, предельные окружные скорости составляют 45м/сек. Максимальное развивае­мое статическое давление дости­гает 10-11 кГ/м 2 при статиче­ском к. п. д. 0,31.

Осевые вентиляторы ЦАГИ типа У (универсальные) имеют более сложную конструкцию. Колесо вентилятора состоит из втулки большого диаметра (0,5 D), на которой укреплены 6 или 12 полых лопаток. Каждая лопатка приклепана к стержню, кото­рый в свою очередь ввернут в специальный стакан и закрепляется гайками во втулке. Лопатки поворотные и могут устанавливаться под углом от 10 до 25° к плоскости вращения колеса (рис. 7.24). Установка лопаток под необходимым углом проводится по разметке, сделанной на боковой поверхности втулки.

Возможность менять углы установки лопаток, т. е. менять геометрию колеса, придает этому вентилятору универсальность, так как развиваемое им давление увеличивается с увеличением угла установки лопаток.

Вентилятор рассчитан на привод от электродвигателя посредством клиноременной передачи, поэтому колесо вентилятора установлено на валу. Вал имеет два подшипника, корпуса которых размещаются в коробчатых держателях. Каждый из держателей имеет четыре литых стержня, оканчивающихся плоскими лапами с отверстиями под установочные болты. Держатели со стержнями и лапами образуют две рамы, на которых удерживается колесо. Шкив для привода расположен консольно на конце вала. В настоящее время (в основном для нужд текстильной промышлен­ности) выпускаются вентиляторы с 12 лопатками № 12, 16 и 20. Колесо этих машин весьма прочно и допускает окружные ско­рости до 80-85 м/сек..

Учитывая, что давление, развиваемое вентилятором типа У, зависит от угла установки лопаток, характерно вентилятора следовало бы строить для каждого угла отдельно. Поэтому для вентиляторов типа У приводится особая универсальная характеристика, охватывающая области работы вентиляторов в различных условиях.

Производительность вентиляторов указанных трех размеров лежит в пределах от 1-6000 до 100000 ,м 3 /ч. Развиваемые давления колеблются от 11 кГ/м 2 (при лопатках, установленных под углом 10°) до 35-40 кГ/м 2 (при установке лопаток под углом.


Электродвигатель, приводящий во вращение колесо вентилятора, располагают обычно на полу у стены помещения, в отверстии которой монтируют вентилятор.

Максимальный к. п. д. вентилятора (при углах установки лопаток 20°) достигает 0,62. При меньших и больших углах уста­новки к. п. д. несколько снижается (до 0,5 при 10° и до 0,58 при 25°).

Под аэродинамической схемой вентилятора подразумевается, совокупность основных конструктивных элементов, расположенных в определенной последовательности и характеризующих проточную часть машины, через которую проходит воздух. В вентиляторе ВОД11П реализована аэродинамическая схема, представленная на рис.7.25 (РК1 + НА + РК2 + СА), т.е. воздух всасывается в вентилятор из канала 5 через коллектор 6 под действием аэродинамических сил, возникающих при вращении лопаток 8 рабочего колеса РК 1 .


Рис.7.25 Аэродинамическая схема вентилятора ВОД11П

При выходе из колеса закрученный поток воздуха попадает на лопасти 9 направляющего аппарата НА1, который раскручивает его и направляет на лопатки 10 рабочего колеса РК2 второй ступени. При этом в НА осуществляется небольшая подкрутка потока перед входом в РК2 в направлении обратном вращению ротора, что способствует повышению тяги на втором колеся. После РК2 поток попадает в спрямляющий аппарат СА. С помощью лопастей 11 СА раскручивает поток и направляет его в диффузор, выполненный в виде расширяющегося конуса 14 и обечайки 13. В диффузоре по ходу потока увеличивается площадь живого сечения, следовательно скоростной напор снижается, а давление возрастает. При этом статический напор также возрастает.

Рабочие колеса РК1 и РК2 жестко закреплены на валу 4, установленном в подшипниках 3 и 12 и получающим вращение от двигателя 1 через муфту 2. Обтекатель 7 служит для выравнивания потока воздуха, втягиваемого в вентилятор.

На рис.7.26. представлен в разрезе вентилятор ВОД11П, который предназначен для проветривания горных выработок добычных участков и отдельных камер, а также используется при проходке стволов шахт, в калориферных установках, на крупных предприятиях и т.п.

Вентилятор состоит из ротора – вала 2 с двумя рабочими колесами 4 и 10, закрепленных жестко на валу с помощью шпонок 3 и стопорных колец. Рабочие колеса первой ступени РК1 и второй ступени РК2 имеют идентичную конструкцию, состоят из втулок 4 на которых размещено 12 лопаток из полимерного материала. Лопатки 8 и 11 устанавливаются в специальные гнезда крепятся с помощью распорных пружинных колец 6 и прижимаются пружинами 5 к втулке колеса. Такое крепление лопаток позволяет поворачивать их вручную через специальные окна в корпусе при остановленном вентиляторе в пределах углов установки 15 – 45 0 для регулирования подачи и давления. Корпус вентилятора состоит из двух разъемных частей верхней 7 и нижней 15, выполненных из стального литья в виде разрезного цилиндра.