Сравнение корней n ой степени примеры. Корень степени n: основные определения

Определение
Степенная функция с показателем степени p - это функция f(x) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f(0) = 0 p = 0 при p > 0 .

Для натуральных значений показателя , степенная функция есть произведение n чисел, равных x :
.
Она определена для всех действительных .

Для положительных рациональных значений показателя , степенная функция есть произведение n корней степени m из числа x :
.
Для нечетных m , она определена для всех действительных x . Для четных m , степенная функция определена для неотрицательных .

Для отрицательных , степенная функция определяется по формуле:
.
Поэтому она не определена в точке .

Для иррациональных значений показателя p , степенная функция определяется по формуле:
,
где a - произвольное положительное число, не равное единице: .
При , она определена для .
При , степенная функция определена для .

Непрерывность . Степенная функция непрерывна на своей области определения.

Свойства и формулы степенной функции при x ≥ 0

Здесь мы рассмотрим свойства степенной функции при неотрицательных значениях аргумента x . Как указано выше, при некоторых значениях показателя p , степенная функция определена и для отрицательных значений x . В этом случае, ее свойства можно получить из свойств при , используя четность или нечетность. Эти случаи подробно рассмотрены и проиллюстрированы на странице « ».

Степенная функция, y = x p , с показателем p имеет следующие свойства:
(1.1) определена и непрерывна на множестве
при ,
при ;
(1.2) имеет множество значений
при ,
при ;
(1.3) строго возрастает при ,
строго убывает при ;
(1.4) при ;
при ;
(1.5) ;
(1.5*) ;
(1.6) ;
(1.7) ;
(1.7*) ;
(1.8) ;
(1.9) .

Доказательство свойств приводится на странице «Степенная функция (доказательство непрерывности и свойств) »

Корни - определение, формулы, свойства

Определение
Корень из числа x степени n - это число , возведение которого в степень n дает x :
.
Здесь n = 2, 3, 4, ... - натуральное число, большее единицы.

Также можно сказать, что корень из числа x степени n - это корень (то есть решение) уравнения
.
Заметим, что функция является обратной к функции .

Квадратный корень из числа x - это корень степени 2: .

Кубический корень из числа x - это корень степени 3: .

Четная степень

Для четных степеней n = 2 m , корень определен при x ≥ 0 . Часто используется формула, справедливая как для положительных, так и для отрицательных x :
.
Для квадратного корня:
.

Здесь важен порядок, в котором выполняются операции - то есть сначала производится возведение в квадрат, в результате чего получается неотрицательное число, а затем из него извлекается корень (из неотрицательного числа можно извлекать квадратный корень). Если бы мы изменили порядок: , то при отрицательных x корень был бы не определен, а вместе с ним не определено и все выражение.

Нечетная степень

Для нечетных степеней , корень определен для всех x :
;
.

Свойства и формулы корней

Корень из x является степенной функцией:
.
При x ≥ 0 имеют место следующие формулы:
;
;
, ;
.

Эти формулы также могут быть применимы и при отрицательных значениях переменных . Нужно только следить за тем, чтобы подкоренное выражение четных степеней не было отрицательным.

Частные значения

Корень 0 равен 0: .
Корень 1 равен 1: .
Квадратный корень 0 равен 0: .
Квадратный корень 1 равен 1: .

Пример. Корень из корней

Рассмотрим пример квадратного корня из корней:
.
Преобразуем внутренний квадратный корень, применяя приведенные выше формулы:
.
Теперь преобразуем исходный корень:
.
Итак,
.

y = x p при различных значениях показателя p .

Здесь приводятся графики функции при неотрицательных значениях аргумента x . Графики степенной функции, определенной при отрицательных значениях x , приводятся на странице «Степенная функция, ее свойства и графики »

Обратная функция

Обратной для степенной функции с показателем p является степенная функция с показателем 1/p .

Если , то .

Производная степенной функции

Производная n-го порядка:
;

Вывод формул > > >

Интеграл от степенной функции

P ≠ - 1 ;
.

Разложение в степенной ряд

При - 1 < x < 1 имеет место следующее разложение:

Выражения через комплексные числа

Рассмотрим функцию комплексного переменного z :
f(z) = z t .
Выразим комплексную переменную z через модуль r и аргумент φ (r = |z| ):
z = r e i φ .
Комплексное число t представим в виде действительной и мнимой частей:
t = p + i q .
Имеем:

Далее учтем, что аргумент φ определен не однозначно:
,

Рассмотрим случай, когда q = 0 , то есть показатель степени - действительное число, t = p . Тогда
.

Если p - целое, то и kp - целое. Тогда, в силу периодичности тригонометрических функций:
.
То есть показательная функция при целом показателе степени, для заданного z , имеет только одно значение и поэтому является однозначной.

Если p - иррациональное, то произведения kp ни при каком k не дают целого числа. Поскольку k пробегает бесконечный ряд значений k = 0, ±1, ±2, ±3, ... , то функция z p имеет бесконечно много значений. Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции.

Если p - рациональное, то его можно представить в виде:
, где m, n - целые, не содержащие общих делителей. Тогда
.
Первые n величин, при k = k 0 = 0, 1, 2, ... n-1 , дают n различных значений kp :
.
Однако последующие величины дают значения, отличающиеся от предыдущих на целое число. Например, при k = k 0 + n имеем:
.
Тригонометрические функции, аргументы которых различаются на величины, кратные 2 π , имеют равные значения. Поэтому при дальнейшем увеличении k мы получаем те же значения z p , что и для k = k 0 = 0, 1, 2, ... n-1 .

Таким образом, показательная функция с рациональным показателем степени является многозначной и имеет n значений (ветвей). Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции. Через n таких оборотов мы возвращаемся на первую ветвь, с которой начинался отсчет.

В частности, корень степени n имеет n значений. В качестве примера рассмотрим корень n - й степени действительного положительного числа z = x . В этом случае φ 0 = 0 , z = r = |z| = x , .
.
Так, для квадратного корня, n = 2 ,
.
Для четных k, (- 1 ) k = 1 . Для нечетных k, (- 1 ) k = - 1 .
То есть квадратный корень имеет два значения: + и - .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Чтобы успешно использовать на практике операцию извлечения корня, нужно познакомиться со свойствами этой операции.
Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Теорема 1. Корень n-й степени (n=2, 3, 4,...) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел:

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если , и n - натуральное число, большее 1, то справедливо равенство


Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Теорема 1 позволяет нам перемножать только корни одинаковой степени , т.е. только корни с одинаковым показателем.

Теорема 3.Если , k - натуральное число и n - натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это - следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4.Если , k, n - натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо нельзя написать В самом деле, Но ведь очевидно, что

Теорема 5.Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е.



Примеры решения заданий


Пример 1. Вычислить

Решение.
Воспользовавшись первым свойством корней (теорема 1), получим:

Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2 ), получим:


Пример 3. Вычислить:

Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления.

Сценарий урока в 11 классе по теме:

« Корень n-й степени из действительного числа. »

Цель урока: Формирование у учащихся целостного представления о корне n -ой степени и арифметического корень n-ой степени, формирование вычислительных навыков, навыков сознательного и рационального использования свойств корня при решении различных задач, содержащих радикал. Проверить уровень усвоения учащимися вопросов темы.

Предметные: создать содержательные и организационные условия для усвоения материала по теме « Числовые и буквенные выражения» на уровне восприятия осмысления и первичного запоминания; формировать умения применять данные сведения при вычислении корня n-й степени из действительного числа;

Метопредметные: способствовать развитию вычислительных навыков; умение анализировать, сравнивать, обобщать, делать выводы;

Личностные: воспитывать умение высказывать свою точку зрения, слушать ответы других, принимать участие в диалоге, формировать способность к позитивному сотрудничеству.

Планируемый результат.

Предметные: уметь в процессе реальной ситуации применять свойства корня n-й степени из действительного числа при вычислении корней, решении уравнений.

Личностные: формировать внимательность и аккуратность в вычислениях, требовательное отношение к себе и к своей работе, воспитывать чувство взаимопомощи.

Тип урока: урок изучения и первичного закрепления новых знаний

    Мотивация к учебной деятельности:

Восточная мудрость гласит: «Можно коня привести к воде, но нельзя заставить его пить». И человека невозможно заставить учиться хорошо, если он сам не старается узнать больше, не имеет желания работать над своим умственным развитием. Ведь знания только тогда знания, когда они приобретены усилиями своей мысли, а не одной памятью.

Наш урок пройдёт под девизом: «Покорим любую вершину, если будем к ней стремиться». Нам с вами в течение урока нужно успеть преодолеть несколько вершин, и каждый из вас должен вложить все свои усилия, чтобы покорить эти вершины.

«Сегодня у нас урок, на котором мы должны познакомиться с новым понятием: « Корень n-й степени» и научиться применять это понятие к преобразованию различных выражений.

Ваша цель – на основе различных форм работы активизировать имеющиеся знания, внести свой вклад в изучение материала и получить хорошие оценки»
Корень квадратный из действительного числа мы с вами изучали в 8 классе. Корень квадратный связан с функцией вида y =x 2 . Ребята, вы помните, как мы вычисляли корни квадратные, и какие у него были свойства?
а) индивидуальный опрос:

    что это за выражение

    что называется квадратным корнем

    что называется арифметическим квадратным корнем

    перечислите свойства квадратного корня

б) работа в парах: вычислите.

-

2. Актуализация знаний и создание проблемной ситуации: Решите уравнение x 4 =1 . Как мы его можем решить? (Аналитически и графически). Решим его графически. Для этого в одной системе координат построим график функции у = х 4 прямую у = 1 (рис. 164 а). Они пересекаются в двух точках: А (-1;1) и B(1;1). Абсциссы точек А и B, т.е. х 1 = -1,

х 2 = 1, являются корнями уравнения х 4 = 1.
Рассуждая точно так же, находим корни уравнения х 4 =16: А теперь попробуем решить уравнение х 4 =5; геометрическая иллюстрация представлена на рис. 164 б. Ясно, что уравнение имеет два корня x 1 и x 2 , причем эти числа, как и в двух предыдущих случаях, взаимно противоположны. Но для первых двух уравнений корни были найдены без труда (их можно было найти и не пользуясь графиками), а с уравнением х 4 =5 имеются проблемы: по чертежу мы не можем указать значения корней, а можем только установить, что один корень располагается левее точки -1, а второй - правее точки 1.

х 2 = - (читается: «корень четвертой степени из пяти»).

Мы говорили об уравнении х 4 = а, где а 0. С равным успехом мы могли говорить и об уравнении х 4 =а, где а 0, а n - любое натуральное число. Например, решая графически уравнение х 5 = 1, находим х = 1 (рис. 165); решая уравнение х 5 " = 7, устанавливаем, что уравнение имеет один корень х 1 , который располагается на оси х чуть правее точки 1 (см. рис. 165). Для числа х 1 введем обозначение .

Определение 1. Корнем n-й степени из неотрицательного числа а (n = 2, 3,4, 5,...) называют такое неотрицательное число, которое при возведении в степень n дает в результате число а.

Это число обозначают , число а при этом называют подкоренным числом, а число n - показателем корня.
Если n=2, то обычно не говорят «корень второй степени», а говорят "«корень квадратный». В этом случае не пишут Это тот частный случай, который вы специально изучали в курсе алгебры 8-го класса.

Если n = 3, то вместо «корень третьей степени» часто говорят «корень кубический». Первое знакомство с кубическим корнем у вас также состоялось в курсе алгебры 8-го класса. Мы использовали кубический корень в курсе алгебры 9-го класса.

Итак, если а ≥0, n= 2,3,4,5,…, то 1) ≥ 0; 2) () n = а.

Вообще, =b и b n =а - одна и та же зависимость между неотрицательными числами а и b, но только вторая описана более простым языком (использует более простые символы), чем первая.

Операцию нахождения корня из неотрицательного числа называют обычно извлечением корня. Эта операция является обратной по отношению к возведению в соответствующую степень. Сравните:


Еще раз обратите внимание: в таблице фигурируют только положительные числа, поскольку это оговорено в определении 1. И хотя, например, (-6) 6 =36 - верное равенство, перейти от него к записи с использованием квадратного корня, т.е. написать, что нельзя. По определению - положительное число, значит = 6 (а не -6). Точно так же, хотя и 2 4 =16, т (-2) 4 =16, переходя к знакам корней, мы должны написать = 2 (и в то же время ≠-2).

Иногда выражение называют радикалом (от латинского слова гаdix - «корень»). В русском языке термин радикальный используется довольно часто, например, «радикальные изменения» - это значит «коренные изменения». Между прочим, и само обозначение корня напоминает о слове гаdix: символ - это стилизованная буква r.

Операцию извлечения корня определяют и для отрицательного подкоренного числа, но только в случае нечетного показателя корня. Иными словами, равенство (-2) 5 = -32 можно переписать в эквивалентной форме как =-2. При этом используется следующее определение.

Определение 2. Корнем нечетной степени n из отрицательного числа а (n = 3,5,...) называют такое отрицательное число, которое, будучи возведено в степень n, дает в результате число а.

Это число, как и в определении 1, обозначают , число а - подкоренное число, число n - показатель корня.
Итак, если а , n=,5,7,…,то: 1) 0; 2) () n = а.

Таким образом, корень четной степени имеет смысл (т.е. определен) только для неотрицательного подкоренного выражения; корень нечетной степени имеет смысл для любого подкоренного выражения.

5. Первичное закрепление знаний:

1. Вычислить: № № 33.5; 33.6; 33.74 33.8 устно а) ; б) ; в) ; г) .

г) В отличие от предыдущих примеров мы не можем указать точное значение числа Ясно лишь, что оно больше, чем 2, но меньше, чем 3, поскольку 2 4 =16 (это меньше, чем 17), а З 4 = 81 (это больше, чем 17). Замечаем, что 24 намного ближе к 17, чем З4, так что есть основания использовать знак приближенного равенства:
2. Найти значения следующих выражений.

Поставить около примера соответствующую букву.

Небольшая информация о великом учёном. Рене Декарт (1596-1650) французский дворянин, математик, философ, физиолог, мыслитель. Рене Декарт заложил основы аналитической геометрии, ввел буквенные обозначения x 2 , y 3 . Всем известны декартовы координаты, определяющие функцию переменной величины.

3 . Решить уравнения: а) = -2; б) = 1; в) = -4

Решение: а) Если = -2, то y = -8. Фактически обе части заданного уравнения мы должны возвести в куб. Получим: 3х+4= - 8; 3х= -12; х = -4. б) Рассуждая, как в примере а), возведем обе части уравнения в четвертую степень. Получим: х=1.

в) Здесь не надо возводить в четвертую степень, это уравнение не имеет решений. Почему? Потому, что согласно определению 1 корень четной степени - неотрицательное число.
Вашему вниманию предложено несколько заданий. Когда вы выполните эти задания, вы узнаете имя и фамилию великого учёного-математика. Этот учёный в 1637 г первым ввел знак корня.

6. Давайте немного отдохнём.

Поднимает руки класс - это «раз».

Повернулась голова – это «два».

Руки вниз, вперёд смотри – это «три».

Руки в стороны пошире развернули на «четыре»,

С силой их к рукам прижать –это «пять».

Всем ребятам надо сесть –это «шесть».

7. Самостоятельная работа:

    вариант: 2 вариант:

б) 3-. б)12 -6 .

2. Решите уравнение: а) х 4 = -16; б) 0,02х 6 -1,28=0; а) х 8 = -3; б)0,3х 9 – 2,4=0;

в) = -2; в)= 2

8. Повторение: Найдите корень уравнения = - х. Если уравнение имеет более одного корня, в ответ впишите меньший из корней.

9. Рефлексия: Чему вы научились на уроке? Что было интересным? Что было трудным?

Ситбаталова Алма Капаровна

учитель математики

лицей № 15

г. Астана

«Спорьте, заблуждайтесь, ошибайтесь, но, ради Бога, размышляйте, и, хотя криво – да сами».

Г. Лессинг.

Чтобы развить у школьников способность работать с информацией, научить их самостоятельно мыслить, уметь работать в команде, можно использовать различные педагогические технологии. Автор отдает предпочтение групповой форме работы.

11 класс

Тема урока: Корень n-ой степени и его свойства.

Цель урока:

Формирование у учащихся целостного представления о корне n -ой степени, навыков сознательного и рационального использования свойств корня при решении различных задач; понимание принципов упрощения выражений, содержащих радикал . Проверить уровень усвоения учащимися вопросов темы.

Задачи урока:

1. Актуализировать необходимые знания и умения. Дать понятие корня n -ой степени, рассмотреть его свойства.

2. Организовать мыслительную деятельность учащихся для решения проблемы (выстроить необходимую коммуникацию). Способствовать развитию алгоритмического, творческого мышления, развивать навыки самоконтроля. Способствовать развитию интереса к предмету, активности.

3. Воспитывать уважение к чужому мнению и чужому труду через анализ и присвоение нового способа деятельности, умение работать в команде, выражать собственное мнение, давать рекомендации.

Оборудование:

Компьютер, проектор и экран для демонстрации презентации; карточки с заданием для работы в группах; карточки с таблицей для оценки присвоения нового вида деятельности; чистые двойные листы для выполнения учащимися разноуровневой самостоятельной работы; карточки с разноуровневыми заданиями.

Тип урока:

Комбинированный (систематизация и обобщение, усвоение новых знаний, проверка и оценка знаний).

Формы организации учебной деятельности :

Индивидуальная, полилог, диалог, работа с текстом слайда, учебника.

Методы :

Наглядный, словесный, графический, условно-символический, исследовательский.

Мотивация познавательной деятельности учащихся:

Сообщить учащимся, что изучение свойств корня n -ой степени является обобщением уже известных учащимся свойств степени.

План урока:

    Организационно-мотивационный ( приветствие учителя , принятие темы, цели урока , включение в работу ).

    Актуализация знаний (систематизация и обобщение, усвоение новых знаний).

    Применение изученного ( установление правильности и осознанности усвоения нового учебного материала; выявление пробелов и неверных представлений и их коррекция).

    Контроль и самоконтроль (Проверка знаний).

    Рефлексия (Мобилизация учащихся на рефлексию своего поведения (мотивации, способов деятельности, общения).

    Подведение итогов (Дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы).

    Домашнее задание (Обеспечение понимания цели, содержания и способов выполнения домашнего задания).

Ход урока:

    Организационно-мотивационный ( приветствие учителя , принятие темы, цели урока, включение в работу, 1-2 мин ). Приветствие учащихся, сообщение темы «Корень n – й степени и его свойства», сообщение цели и способа деятельности.

    Актуализация знаний (систематизация и обобщение, усвоение новых знаний, 15 мин).

Повторение опорных знаний (систематизация и обобщение):

Класс делится на три группы.

Деятельность учителя: задает вопросы:

    Определение арифметического квадратного корня.

    Свойства арифметического квадратного корня.

    Свойства степени с натуральным показателем.

Записывают свойства на листе ,

,

Отвечают на вопросы ,

Выполняют задания.

Усвоение новых знаний:

Деятельность учителя: Вводятся новые понятия:

    ОПРЕДЕЛЕНИЕ. Корнем n -ной степени из числа a называется такое число, n -ная степень которого равна a .

    ОПРЕДЕЛЕНИЕ. Арифметическим корнем n -ной степени из числа а называют неотрицательное число, n -ная степень которого равна a .

    Основные свойства арифметических корней n -ной степени.

При четном n существует два корня n -ной степени из любого положительного числа a , корень n -ной степени из числа 0 равен рулю, корень четной степени из отрицательных чисел не существует. При нечетном n существует корень n -ной из любого числа a и притом только один.

Для любых чисел выполняются равенства:

1) ; 3) ;

2) 4) ;

5) ; 6) .

    Примеры с заданиями даются на слайде:

Деятельность учащихся в группах:

Самостоятельно записывают свойства на листе ,

Проверяют правильность по слайду ,

Отвечают на вопросы ,

Выполняют задания.

    Применение изученного ( установление правильности и осознанности усвоения нового учебного материала; выявление пробелов и неверных представлений и их коррекция, 15 мин).

Деятельность учителя: Дает комментарий к дальнейшим действиям:

Работа в группах по этапам ,

Перед каждой группой лежит листок с одним и тем же заданием, но с разными условиями (на слайде «Упростить выражение») :

- 1 этап «Генерация идей».

1 этап:

    Поставить цифру 1.

    Записать порядок предполагаемых действий, необходимых для выполнения задания.

    Руководство деятельностью группы (добиться включенности в работу всех учащихся) .

- 2 этап «Анализ идей».

    Знакомство с инструкцией деятельности на слайде:

    Этап:

    Поставить цифру 2.

    Выполнить задание по предложенному алгоритму усовершенствовав его при необходимости.

    Сделать и записать вывод, можно ли выполнить задание по предложенному алгоритму.

    Руководство деятельностью групп .

- 3этап «Экспертиза».

    :

    Этап:

    Поставить цифру 3.

    Проверить правильность выполнения задания, согласно алгоритма.

    Сделать и записать вывод, удалось ли составить необходимый алгоритм, и верно выполнить задание.

- 4этап «Предъявление результатов».

Знакомство с инструкцией деятельности на слайде :

    Этап:

    Оценить деятельность всех групп на каждом этапе.

    Индивидуально выбрать этап, на котором было легче работать, и этап, на котором возникали трудности.

Деятельность учащихся в группах:

на 1 этапе: анализируют задания , выполняют необходимые действия ,

на 2 этапе: анализируют алгоритм, предложенный другой группой , при необходимости вносят коррективы, выполняют задания ,

на 3 этапе: анализируют работу предыдущих групп, делают вывод ,

на 4 этапе: анализируют сделанный вывод , сверяют правильность решения с ответом на слайде , заполняют карточки с таблицей, выбирая роль, в которой более успешны.

Минута здоровья (гимнастика для глаз).

    Контроль и самоконтроль (Проверка знаний, 7 мин).

Деятельность учителя: Дает инструкцию по выполнению самостоятельной работы:

    Все учащиеся выполняют задания 1 уровня (на «3») задания на карточках слайде:

Самостоятельная работа. Оценка «3».

I вариант.

а)

б)

2). Сравнить числа:

II вариант.

1). Найти значение числового выражения:

а)

б)

2). Сравнить числа:

    :

Самостоятельная работа. Оценка «3».

Ответы :

I вариант

1). а) 11

б) 15

2). <

II вариант

1). а) 7

б) 15

2. >

3. Кто справился с заданием 1 уровня?

4. Учащиеся, справившиеся с 1 уровнем, переходят к заданиям 2 уровня (на «4»), те, кто не справился, остаются на 1 уровне задания на слайде, на карточках :

Самостоятельная работа.

Оценка «3».

1). Найти значение числового выражения:

а)

б)

2). Сравнить числа:

Оценка «4».

1). Решить уравнение:

а)

б)

2). Упростить выражение:

    Самопроверка по ответам на слайде :

Самостоятельная работа.

Ответы :

Оценка «3».

1). а) 13

б) 6

2). <

Оценка «4».

1). а)

б)

2). 2а

6. Кто перешел на 3 уровень?

Кто остался на 2 уровне?

Кто перешел на 2 уровень?

Кто остался на 1 уровне?

7. Учащиеся, получившие «4» выполняют задания 3 уровня (на «5»).

Учащиеся, не получившие «4» и справившиеся с 1 уровнем, выполняют задания 2 уровня.

Учащиеся, не получившие «3», выполняют задания 1 уровня задания на карточках на слайде:

Самостоятельная работа.

Оценка «4».

Оценка «5».

Оценку «4»?

Оценку «3»?

10. Кто не справился с заданиями 1 уровня?

Деятельность учащихся в группах:

    Выполняют задания.

    Выполняют самопроверку, ставя оценку «3», если выполнены все задания .

    Предъявляют результаты.

    Выполняют задания.

    Выполняют самопроверку: ставят «3», если выполнены все задания 1 уровня; ставят «4», если выполнены 2 из 3 заданий 2 уровня .

    Предъявляют результаты.

    Выполняют задания.

    Выполняют самопроверку: ставят «3», если выполнены все задания 1 уровня; ставят «4», если выполнены 2 задания 2 уровня; ставят оценку «5», если выполнено хотя бы 1 задание из 2-х .

    Предъявляют результаты.

    Рефлексия (Мобилизация учащихся на рефлексию своего поведения (мотивации, способов деятельности, общения, 3 мин).

Деятельность учителя: Дает комментарии по написанию «Синквейна», инструкция на слайде:

Синквейн.

1 строка – заявляется тема или предмет (одно существительное);

2 строка – описание предмета (два прилагательных или причастия);

3 строка – характеризуются действия предмета (три глагола);

4 строка – выражение отношения автора к предмету (четыре слова);

5 строка – синоним, обобщающий или расширяющий смысл предмета (одно слово).

Деятельность учащихся в группах:

Знакомятся с алгоритмом написания Синквейна,

Пишут Синквейн на листах с самостоятельной работой,

По желанию зачитывают Синквейн,

Сдают листы на проверку.

    Подведение итогов (Дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы, 1-2 мин).

Деятельность учителя: Анализ оценки деятельности на разных этапах урока: Почему вам было легче (сложнее) в той или иной роли? Оценивается работа каждого учащегося.

Деятельность учащихся в группах: отвечают на вопрос.

    Домашнее задание (Обеспечение понимания цели, содержания и способов выполнения домашнего задания, 1-2 мин).

Деятельность учителя: Дает инструкцию по выполнению домашней работы: (А. Абылкасымова, естеств.-мат. напр.)
§ 5, № 83 (2; 4), № 84 (2; 3), № 86, 87 (3; 4), № 89.

‹ ›

Чтобы скачать материал, введите свой E-mail, укажите, кто Вы, и нажмите кнопку

или используя формулу разности квадратов так:

  • (x 2 -4)*(x 2 +4)=0.

Произведение двух сомножителей равно нулю, если хотя бы один из них равен нулю.

Выражение x 2 +4 не может равняться нулю, следовательно, остается только (x 2 -4)=0.

Решаем его, получаем два ответа.

Ответ: x=-2 и x=2.

Получили, что уравнение x 4 =16 имеет только 2 действительных корня. Это корни четвертой степени из числа 16. Причем положительный корень, называют арифметическим корнем 4 степени из числа 16. И обозначают 4√16. То есть 4√16=2.

Определение

  • Арифметическим корнем натуральной степени n>=2 из неотрицательного числа а называется некоторое неотрицательное число, при возведении которого в степень n получается число а.

Можно доказать, что для любого неотрицательного а и натурального n уравнение x n =a будет иметь один единственный неотрицательный корень. Именно этот корень и называют арифметическим корнем n-ой степени из числа а.

Арифметический корень n-ой степени из числа а обозначается следующим образом n√a.

Число а в данном случае называется подкоренным выражением.

В случае когда n=2, двойку не пишут, а записывают просто √а.

Арифметические корни второй и третей степени имеют свои специальные названия.

Арифметический корень второй степени называется квадратным корнем, а арифметический корень третей степени - кубическим корнем.

Используя только ишь определение арифметического корня, можно доказать, что n√a равен b. Для этого нужно показать, что:

  • 1. b больше либо равно нулю.
  • 2. b n =a.

Например, 3√(64) = 4, так как 1. 4>0, 2. 4 3 =64.

Следствие из определения арифметического корня.

  • (n√a) n = a.
  • n√(a n) = a.

Например, (5√2) 5 = 2.

Извлечение корня n-ой степени

Извлечением корня n-ой степени называется действие, с помощью которого отыскивается корень n-ой степени. Извлечение корня n-ой степени является обратным действием к возведению в n-ую степень.

Рассмотрим пример.

Решить уравнение x 3 = -27.

Перепишем это уравнение в виде (-x) 3 =27.

Положим у=-х, тогда y 3 =27. Это уравнение имеет один положительный корень y= 3√27 = 3.

Отрицательных корней у этого уравнения нет, так как y 3

Получаем, что уравнение у 3 =27 имеет только один корень.

Возвращаясь к исходному уравнению, получаем, что оно имеет тоже только один корень x=-y=-3.